簡易檢索 / 詳目顯示

研究生: 孫禮成
Li-Chen Sun
論文名稱: 白金微粒/Ru錯合物/高分子薄磨修飾電極之製備及其電催化應用
指導教授: 林如章
Lin, Ru-Jang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: p.65
中文關鍵詞: 薄膜-金屬修飾電極氫析出電子傳遞釕錯合物
英文關鍵詞: membrane-metal modified electrode, hydrogen evolution, electrotransfer, Ru-complex
論文種類: 學術論文
相關次數: 點閱:273下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜-金屬修飾電極常用於燃料電池、光電池…等薄膜電池,其中還原端的金屬部分多為鉑等對酸的氫析出有良好的催化效應的物種,基於此,本實驗嘗試在薄膜與金屬間再分別加入數種錯合物,利用它們優良的電子傳遞特性建立暢通的電子傳遞體系,期望能有優於雙金屬微粒電極的表現。
    分別以不同種的Ru系列錯合物與Nafion混合後塗佈於玻璃化碳電極(GC)上製成薄膜,待乾燥後於H2PtCl6金屬鹽類水溶液,經脈衝電解(DPTB)後,可得數種不同的薄膜-金屬修飾電極,同時,當Ru系列錯合物混入Nafion的不同濃度,可以得到不同的鉑電析數量,利用此一特性可以找出用去較少的鉑,而能得到較高的真實面積。
    利用掃瞄式電子顯微鏡(SEM)測量出金屬微粒的粒徑及分佈狀態以及鉑的電析位置,並利用能量發散光譜儀(EDS)測微粒之金屬成份,雷射半生儀、螢光儀測出Ru系列錯合物與鉑之間的通路確實良好,能夠有效率地將酸還原成氫,同時,在同樣製備過程未用Ru系列錯合物修飾的薄膜-金屬修飾電極之真實面積也不如使用Ru系列錯合物修飾的薄膜-金屬修飾電極來得大,同時此一修飾電極,有非常長的連續使用效果,連續一個月的穩定測試之後,效果依然穩定。

    Membrane-metal modified cells are usually applied to the field of membrane cells, such as fuel cells, light cells… etc. Some hydrogen evolution catalysts, for example Pt metal, are used as the cathodes in these cells. Therefore, in this research, we try to dose a series of Ru complexes into the intervals between the cathode and the thin film electrode to improve the hydrogen evolution efficiency of the membrane-metal modified cells.
    Ru complex (chosen from Ru(bpy)2phenNH2, Ru(dmb)2 phenNH2, Ru(tmb)2phenNH2, Ru(bpy)2Cl2, Ru(dmb)2Cl2, Ru(tmb)2Cl2) doped Nafion solution was drop-coated onto glassy carbon (GC) electrode and formed a thin film after drying. Then, the GC electrode was immersed into H2PtCl6 solution, and the Pt/Ru complex/polymer modified electrode was obtained by reducing Pt with a DPTB method. Different amount of Pt was electroplated on the GC electrode even at the same conditions (the same potential, the same time interval) when different consistency or kinds of Ru complexes were used, suggesting the influence of the ligands on the red-ox property of Ru complexes. The effective surface area (estimated by CV method) of Pt in the modified electrode is also varied with different species of Ru complexes, which in turn affect on the efficiency of hydrogen evolution.
    Furthermore, from the information obtained by SEM and EDS, the alignment and the density of Pt particles growing on the GC electrode are figured out. From the fluorescence lifetime and luminescence spectra, a good electron-transfer is considered to have occurred between D series Ru complexes and Pt modified electrode that explained why a high hydrogen evolution efficiency has been obtained. The modified electrodes are still stable one month after fabricated and their hydrogen evolution efficiency was as good as a newly prepared one.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 目次……………………………………………………………………III 圖表目錄………………………………………………………………V 第一章 緒論………………………………………………………1 1-1 研究的動機與目的……………………………………………1 1-2修飾電極之簡介………………………………………………2 1-3薄膜-金屬修飾電極簡介………………………………………3 1-4高分子膜Nafion………………………………………………4 1-5 Ru錯合物之簡介………………………………………………6 1-5-1 Ru錯合物的光化學與光物理性質……………………6 1-5-2 Ru(II)多錯合物的結構、鍵結與激態……………11 1-5-3 Ru(II)多錯合物在基態的氧化還原性質…………15 第二章 實驗部分…………………………………………………18 2-1試劑、藥品……………………………………………………18 2-2儀器與設備……………………………………………………20 2-3白金微粒/Ru錯合物/Nafion修飾電極的製備………………26 2-3-1白金微粒/Ru錯合物/Nafion修飾電極的製備流程………26 2-3-2脈衝電解(DPTB)方式製備電極…………………………27 2-3-3 白金微粒/P系列/Nafion/GC修飾電極的製作…………28 2-3-4 白金微粒/D系列/Nafion/GC修飾電極的製作…………29 第三章 結果與討論………………………………………………30 3-1藥品的合成……………………………………………………30 3-2 Ru錯合物與Nafion混合方式對鉑電析量的影響…………36 3-3 Ru錯合物種類對鉑電析量的影響…………………………37 3-4 白金微粒/Ru錯合物/Nafion修飾電極對氫離子 還原效率的影響……………………………………………39 3-5不同種類Ru錯合物對氫離子還原穩定性的比較……………50 結論…………………………………………………………………55 參考文獻……………………………………………………………56 附圖…………………………………………………………………61

    1. M.WATANABE, S.MOTOO, Eletroanalytical Chemistry and Interfacial Electrochemistry, 1975, 60, 267–273.
    2. 陳建利,金屬微粒電極的製備與應用,民86。
    3. S.Chardon-Noblat, A.Deronzier* J.Electroanalytical Chem- istry,1998,444,253-260.
    4. P.R.Moses, L.Wier, R.W.Murray, Anal. Chem., 1975, 47, 1882.
    5. R.W.Murray, A.G.Ewing, R.A.Durst, Anal.Chem., 1987, 59, 379A.
    6. H.Allen, O.Hill, P.F.Turrner, Anal.Chem. 1984, 56, 667.
    7. J.Wang, G.Rivas, M.Chicharra, Electro-analysis., 1996, 8, 434.
    8. Q.Chini, J.Zhang, S.Dong, E.Wang, Electrochimica Acta. ,1994, 39, 2431.
    9. J.G.Vos, M.R.Symth, K.Vytras, Electroanalysis., 1995, 7, 619.
    10.H.Sakslund, J.Wang, O.Hammerich, J.Electroanalytical. Chem. ,1995,397,149.
    11.Q.Chini,S.Dong, Analytical Chimica Acta, 1995,310,429.
    12.N.S.Sundaresan, B.D.Malhotra, Electroanalysis,1995,7,579.
    13.J.Wang, H.Wu, J.Electroanal.Chem.,1995,395,287
    14.F.Lu,J.Wang, J.Liu, Electroanalysis,1996,8,1127.
    15.J.A.Cox, R.K.Jaworski, Anal.Chem.,1989,61,2176.
    16.Snell.K.D, Keenan.A.G, Chem.Soc.Rev,1979,8,259.
    17.Kiwi. J, “The effect of polymers on dispersion properties”; Tadros,Th.F.,Ed.,Academic Press: London,1982.
    18.Bookbinder.D.C, Bruce.J.A, Dominey.R.N, Lewis.N.S, Wrig-hton.M.S, Proc.Natl.Acad.Sci.U.S.A.1980,77,6280.
    19.Doblhofer.K, Durr.W, J.Electrochem.Soc.,1980,127,1041.
    20.W.H.Kao, T.J.Kwana, J.Am.Chem.Soc,1984,106,473.
    21.D.E.Weisshaar, T.J.Kwana, J.Electroanal.Chem,1984,163,395
    22.P.OCON ESTEBAN*, J.-M.LEGER, C.LAMY, JOURNAL OF APPLIED ELECTROCHEMISTRY, 1989, 19,462.
    23.M.L. Banon, V. Lopez, P.Ocon, P. Herrasti, Synthetic Metals, 1992,48,355-362.
    24.F.DELIME, J.M.LEGER, C.LAMY, J.APPLIED ELECTROCHEMI-STRY ,1998,28,27-35.
    25.A.S.Arico, N.Giordano*,J.Electrochem.Soc.,1996,143. 3950- 3959.
    26.R.Liu, W.H.Her, P.S.Fedkiw, J.Electrochem. Soc.,1992, 139. 15-23.
    27.A.V.Anantaraman, C.L.Gardner, J.Electroanalytical Chemi-stry,1996,414,115-120.
    28.Y.M.Maksimov, B.I.Podlovchenko, T.L. Azarchenko, Elec-trochimica Acta.,1998,43, 1053-1059
    29.R.Mosdale, S.Srinivasan*, Electrochimica Acta. 1995, 40, 413-421
    30.A.K.Aramata, H.Nakajima, K.Fujikawa, H.Kita, Electro-chimica Acta.,1983,28,777-780.
    31.W.T.Grubb, J.Electroanal.Chem. 1959 ,106, 275.
    32.Aldrichimica Acta 1986,19,76
    33.G.C.Scherer, T.Momose, K.Tomiie, J.Electrochem. Soc, 1988, 135, 3071.
    34.H.Nakajima, H.Kita, Electrochim.Acta, 1988, 33, 521.
    35.高智亮,混合價錯合物修飾電極在感測超氧陰離子的研究,民88。
    36.K.Kordesch, G.Simader in ‘Fuel Cells and their Appli-cations’ ,VCH, Weinheim, 1996, page 151.
    37.R.J.Lawrence, L.D.Wood, U.S.Pat., 4272353,1981.
    38.N.Nagel, S.Stucki, U.S.Pat., 4326930,1982.
    39.H.Takenaka, E.Torikai, Y.Kawami, N.Wakabayashi, Int. J.Hydrogen Energy, 1982, 7, 397
    40. A.Juris, V.Balzani, F.Barigelletti, S.Campagna, P.Belser, A.Von Zelewsky, Coordination Chemistry Reviews, 1988, 84, 85-277.
    41.H.H.Jahhe',M.Orchin, Theory and Applications of Ultra-violet Spectroscopy, Wiley, New York, 1962.
    42.B.P.Lever, Inorganic Electronic Spectronic, 2nd edn., Elsevier, Amsterdam,1984.
    43.N.J.Turro, Modern Molecular Photochemisy, Ben-jamin, Menlo Park, California,1978.
    44.V.Balzani, F.Bolletta, M.T.Gandolfi, M.Maestri, Top. Curr. Chem. ,1978, 75, 1.
    45.F.Scandola, V.Balzani, J.Chem.Educ.,1983,60,814
    46.N.Sutin, C.Creutz, J.Chem.Educ.,1983,60,809.
    47.E.A.Seddon, K.R.Seddon, The Chemistry of Ru-thenium, Elsevier, Amsterdam, 1984, Chap15.
    48.G.J.Kavarnos, N.J.Turro,Chem.Rev.,1986,86,401.
    49.V.Balzani, F.Bolletta, F.Scandola, J.Am.Chem.Soc 1980, 102, 2152.
    50.V.Balzani, F.Scandola, in M.Graetzel(Ed),Energy Resources through Photochemistry and Catalysis Academic Press, New York,1983,p.1.
    51.N.Sutin, Prog.Inorg.Chem.,1983,30,441.
    52.V.Balzani, F.Scandola,Inorg.Chem.,1986,25,4457
    53.R.A.Marcus, Annu.Rev.Phys.Chem.,1964,15,155.
    54.R.Ballardini, G.Varanim, M.T.Indelli, F.Scandola, V.Bal-zani, J.Am.Chem,Soc.,1978,100,7219.
    55.M.T.Indelli, R.Ballardini, F.Scandola, J.Phys. Chem., 1984, 88, 2547.
    56.V.Balzani, F.Bolletta, Comments Inorg Chem., 1983,2.211
    57.V.Balzani, F.Bolletta, M.Ciano, M.Maestri, J. Chem.Educ., 1983,60,447.
    58.V.Balzani, A.Juris, F.Scandola, in Pelizzetti and N.Serpone (Eds),Homogeneous and Heterogeneous Photocatalysis, Reidel, Dordrecht, 1986,p,1.
    59.M.Graetzel(Ed),Energy Resources through Photo-chemistry and catalysis, Academic Press, New York, 1983.
    60.V.Balzani, A.Juris, F.Barigelletti, P.Belser, A. Von Zelewsky, Riken Q., 1984,78,78.
    61.G.A.Crosby, Acc.Chem.Res.,1975,8,231.
    62.D.P.Rillema, D.S.Jones, H.A.Levy, J.Chem.Soc. Chem. Commun. ,1979,849.
    63.J.N.Demas,J.Chem.Educ.,1983,60,803.
    64.A.W.Adamson,J.Chem.Educ.,1983,60,797.
    65.P.D.Fleischauer, P.Fleischauer, Chem.Rev.,1970,70,199.
    66.V.Balzani, V.Carassiti, Photochemistry of Co-ordination compounds, Academic Press, London, 1983.
    67.N.E.Tokel-Takvoryan, R.E.Hemingway, A.J.Bard, J.Am. Chem. Soc.,1973,95,6582.
    68.T.Saji, S.Aoyagui, J.Electroanal.Chem. Interf-acial Electrochem.,1975,58,401.
    69.Y.Ohsawa, M.K.DeArmond, K.W.Hanck, D.E.Morris, J.Am. Chem. Soc.,1983,105,6522.
    70.J.L.Kahl, K.W.Hanck, M.K.DeArmond, J.Phys.Chem., 1978, 83, 540.
    71.M.K.DeArmond, C.M.Carlin, Coord.Chem.Rev.,1981, 36,325.
    72.D.Morris, K.W.Hanck, M.K.DeArmond, J.Electroanal Chem., 1983, 149, 115.
    73.G.A.Heath, L.J.Yellowlees, P.S.Braterman, Chem. Phys. Lett. ,1982,92,646.
    74.Y.Ohsawa, M.K.DeArmond, K.W.Hanck, C.G.Moreland, J.Am. Chem. Soc., 1985,107,5383.
    75.S.M.Angel, M.K.DeArmond, R.J.Donohoe, K.W.Hanck, D.H.Wertz, J.Am.Chem.Soc.,1984,106,3688.
    76.K.DeArmond, K.W.Hanck, D.W.Wertz, Coord.Chem. Rev., 1985, 64,65.
    77.E.Amouyal, A.Homsi, J.C.Chambron, J.P.Sauvage, J.Cham. Soc.Dalton Trans.1990,1841.
    78.D.S.Sigman, M.D.Kuwabara, Chan.C.H.B., T.W.Bruice, Methods Enzymol. 1991,208,414-433.
    79.D.G.Whitten, P.P.Kirsch, G.Sprintschnik, J.Am.Chem.Soc. 1997,119,4979-4953.
    80.G.A.Mines, M.J.Bjerrum, M.G.Hill,I.J.Chang, H.B.Gray, J.Am. Chem.Soc.1996,118,1961-1965.
    81.S,Sathiyabalan, P.E.Hoggard, Inorg.Chem.1995,34,4562-4571
    82.李驊登,科儀新知第十一卷第一期,44-62頁。
    83.Ru-Jang Lin, Toshikazu Onikubo*, Keiji Nagai, Masao Kaneko**, J.Electroanal.Chem.,1993,348,189-199.
    84.I.A.Hamid, P.Atanasov, E.Wilkins, Analytica Chimica Acta, 1995,313,45

    QR CODE