研究生: |
丁建棋 Ting, Chien-Chi |
---|---|
論文名稱: |
以單分子螢光共振能量轉移研究造成肌萎縮性脊髓側索硬化症與額顳葉癡呆症的GGGGCC重複序列其結構間的動力學 Structural Kinetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Linked GGGGCC Repeats Studied by Single-Molecule Fluorescence Resonance Energy Transfer |
指導教授: |
李以仁
Lee, I-Ren |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 肌萎縮性脊髓側索硬化症 、額顳葉癡呆症 、六核苷酸重複序列擴張 、G-四聯體 、單分子螢光共振能量轉移 |
英文關鍵詞: | ALS, FTD, hexanucleotide repeat expansions, G-quadruplex, smFRET |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.037.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:33 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌萎縮性脊髓側索硬化症 (Amyotrophic lateral sclerosis, ALS) 與額顳葉癡呆症 (frontotemporal dementia, FTD) 皆為嚴重的神經退化性疾病,並且兩者在基因序列中被發現有高度的相關性。於C9orf72基因中的內顯子中發現含有GGGGCC六核苷酸重複序列擴張是家族性遺傳ALS與FTD常見的病因。在正常人的基因中,能在內顯子中發現的重複次數約在25次以下,但卻能在ALS或FTD的患者中發現數十至數百個重複序列。GGGGCC序列可能以不同G-四聯體結構的方式摺疊成二級結構,這樣的結構多元性可能導致轉錄失敗的RNA產物,或是產生錯誤摺疊的二肽重複蛋白。此種G-四聯體的結構隨著重複序列次數的不同,可能產生不同的形式。d(GGGGCC)4可形成反平行的G-四聯體結構,然而其他重複次數亦可能產生平行的G-四聯體結構。在本實驗中,我們利用單分子螢光共振能量轉移 (smFRET) 研究d(GGGGCC)4構形的動態變化。因而發現d(GGGGCC)4 於鉀離子的環境中容易形成G-四聯體結構,但若在無鉀離子的情況下易形成類髮夾結構,而此兩結構間的相互轉換在我們的研究中極為鮮少。為了解兩結構間的活化能,我們建立一套恆溫系統以利觀測,最終求得的活化能其數值極高,能說明兩者在室溫下鮮見相互轉換的原因,有了這些熱力學及動力學的資訊,能幫助我們建立結構間轉換反應坐標的圖像。最後,我們也嘗試研究 (GGGGCC)n重複序列5次以上的結構,並發現在重複次數較多時,較容易以類髮夾結構的形式存在。
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative diseases with common genetic cause. GGGGCC hexanucleotide repeat expansions (HRE) located in the intronic region of chromosome 9 open reading frame 72 (C9orf72) are the most common cause of familial ALD and FTD. In normal people, there are fewer than 25 intronic GGGGCC repeats, whereas patients with ALS/FTD have tens to hundreds repeats. GGGGCC repeats can fold into different conformations of G-quadruplex secondary structures. These structural polymorphism of GGGGCC repeats leads to transcription of abortive transcripts and translation of misfolded dipeptide-repeat proteins. The form of G-quadruplex varies with the fold number of GGGGCC repeats. d(GGGGCC)4 forms intramolecular anti-parallel G-quadruplex structure while other times of repeats tend to have mixed or parallel G-quadruplex structure. We use single-molecule fluorescence resonance energy transfer (smFRET) to study the structural dynamics of d(GGGGCC)4. We found that d(GGGGCC)4 will form G-quadruplex structure in the presence of potassium ion, but form hairpin-like structure in the absence of potassium ion. The interconversion of these two states is hardly found in our experiments. In order to find out the activation energy between these two states, we set up an environment in which the temperature is alterable. The estimated activation energy is as high as 33.4 kcal mol-1 and it’s in accordance with the result that the interconversion event is rare. With the aid of these thermodynamic and kinetic information, we can build a reaction coordinate of the two states. Finally, we also tried to study the d(GGGGCC)n sequence with n≥5, and we noticed that the d(GGGGCC)n prefer hairpin-like structure when the number of repeats increase.
1. 中華民國運動神經元疾病病友協會,淺談漸凍人─肌萎縮性脊髓側索硬化症,2012/6。取自http://www.mnda.org.tw/Pages_Show.asp?AD=3,12&FID=
6&ID=988
2. https://en.wikipedia.org/wiki/Amyotrophic_lateral_sclerosis
3. 大學健康網絡(UHN)病人教育網站,額顳葉癡呆症(FTD),2017/1。取自https://www.uhn.ca/PatientsFamilies/Health_Information/Health_Topics/Documents/Frontotemporal_Dementia_Chinese.pdf
4. https://en.wikipedia.org/wiki/Frontotemporal_dementia
5. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21 linked ALS FTD. Neuron 72, 257–268 (2011).
6. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p linked FTD and ALS. Neuron 72, 245–256 (2011).
7. Gijselinck, I. et al. The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Molecular Psychiatry 21, 1112–1124 (2016).
8. Xi, Z. et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. 129, 715–727 (2015).
9. Haeusler, A. R. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507, 195–200 (2014).
10. Mori, K. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 339, 1335-1338 (2013).
11. Harper, P. S. et al. Anticipation in myotonic dystrophy : new light on an old problem. Am. J. Hum. Genet. 51, 10-16 (1992).
12. Fu, Y. H. et al. A Variations of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1-20 (1991).
13. Oberle I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 262, 1097-1102 (1991).
14. Verkerk A. J. et al. Identification of a gene (FMR-1) containing a CCG repeat coincident with a breakpoint cluster region of exhibiting length variation in fragile X syndrome. Cell 65, 905-914 (1991).
15. Yu S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179-1181 (1991).
16. Mahadevan M. et al. Myotonic Dystrophy Mutation: An Unstable CTG Repeat in the 3' Untranslated Region of the Gene. Science 255, 1253-1255 (1992).
17. Brook J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 68, 799-808 (1992).
18. Richard G. F. Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy? Trends Genet. 31, 177-186 (2015).
19. Mirkin S.M. Expandable DNA repeats and human disease. Nature 447, 932-940 (2007).
20. McMurray C. T. Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet. 11, 786-799 (2010).
21. https://en.wikipedia.org/wiki/Okazaki_fragment
22. http://ib.bioninja.com.au/higher-level/topic-7-nucleic-acids/71-dna-structure-and-replic/okazaki-fragments.html
23. Lagnado J. The story of quadruplex DNA–it started with a Bang! (Article), 2013/4. From : http://www.biochemist.org/bio/03502/0044/035020044.pdf
24. Gellet M. et al. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).
25. Miles H. T. et al. Formation of a new 5’-guanylic acid helix in neutral solution. Biochem. Biophys. Res. Commun. 49, 199-204 (1972).
26. Pinnavaia T.J. et al. Self-Assembled S'-Guanosine Monophosphate. Nuclear Magnetic Resonance Evidence for a Regular, Ordered Structure and Slow Chemical Exchange. J. Am. Chem. Soc. 97, 7198-7200 (1975).
27. Pinnavaia T.J. et al. Alkali Metal Ion Specificity in the Solution Ordering of a Nucleotide, 5'-Guanosine Monophosphate. J. Am. Chem. Soc. 100, 3625-3627 (1978).
28. Fisk C. L. et al. Self-Structured Guanosine 5'-Monophosphate. A 13C and 1H
Magnetic Resonance Study. J. Am. Chem. Soc. 104, 3307 (1982).
29. http://dna-barcoding.blogspot.com/2014/12/four-stranded-dna.html
30. Bhattacharyya D. et al. Metal Cations in G-Quadruplex Folding and Stability. Front. Chem. 4, 38 (2016).
31. Yaku H. et al. Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chem. Commun 48, 6203–6216 (2012).
32. Hazel P. et al. Predictive modelling of topology and loop variations in dimeric DNA quadruplex structures. Nucleic Acids Res. 34, 2117–2127 (2006).
33. König S. L. et al. Seven essential questions on G-quadruplexes. Biomol. Concepts 1, 197–213 (2010).
34. Viglasky V. et al. Potential uses of G-quadruplex-forming aptamers. Gen. Physiol. Biophys. 32, 149–172 (2013).
35. Ambrus A. et al. Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Research 34, 2723–2735 (2006).
36. Zhou Bo et al. Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci. Rep. 5, 16673 (2015)
37. Tinoco I. Jr et al. Biological mechanisms, one molecule at a time. Genes Dev. 25, 1205-1231 (2011).
38. Ishikawa-Ankerhold H. C. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 17, 4047-4132 (2012).
39. 李以仁、許顥頤、秦志皞、吳佳諭(2015)。「單分子螢光共振能量轉移光譜簡介。」化學,73卷4期,303-312。
40. https://en.wikipedia.org/wiki/Total_internal_reflection
41. 黃子芸。2016。利用單分子技術研究小腦失調症第31型特殊連續TGGAA重複序列結構動態學。碩士學位論文。台中:國立中興大學基因體暨生物資訊學研究所。
42. 倪丞緯。2017。以單分子光譜觀測 CTG 重複序列的滑動現象。碩士學位論文。台北:國立臺灣師範大學化學系。
43. https://sg.idtdna.com/site/Catalog/Modifications/Product/1476
44. 秦志皞。2016。脊髓小腦萎縮症31型相關基因之結構和動力學研究。碩士學位論文。台北:國立臺灣師範大學化學系。
45. Herman B. Basic Concepts in Fluorescence (Article). From : https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/fluorescence/fluorescenceintro/
46. Cordes T. et al. On the Mechanism of Trolox as Antiblinking and Antibleaching Reagent. J. Am. Chem. Soc. 131, 5018-5019 (2009).
47. Koirala D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 3, 782-787 (2011)
48. http://zhuang.harvard.edu/index.html
49. Mckinney S. A. et al. Analysis of single-molecule FRET trajectories using Hidden Markov Modeling. Biophys. J. 91, 1941-1951. (2006)
50. Chen H. et el. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl Acad. Sci. USA 109, 799-804. (2012)
51. https://sg.idtdna.com/calc/analyzer
52. Agrawal P. et el. The Major G‑Quadruplex Formed in the Human BCL‑2 Proximal Promoter Adopts a Parallel Structure with a 13-nt Loop in K+ Solution. J. Am. Chem. Soc. 136, 1750-1753 (2014)