簡易檢索 / 詳目顯示

研究生: 柯奇恩
KE,Chi-En
論文名稱: 多通道棘波分類系統之低功率ASIC電路設計
Efficient ASIC Architecture for Low-Power Multi-Channel Spike Sorting System
指導教授: 黃文吉
Hwang, Wen-Jyi
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 45
中文關鍵詞: 棘波分類棘波偵測特徵擷取特殊應用積體電路非線性能量運算子通用賀賓學習法則
英文關鍵詞: spike sorting, spike detection, feature extraction, ASIC, NEO, GHA
論文種類: 學術論文
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對目前現有的棘波分類系統設計架構,並使用ASIC電路設計方式來實現此架構。本論文採用Nonlinear Energy Operator (NEO) 來偵測棘波,並搭配Generalized Hebbian Algorithm (GHA)演算法將偵測到的棘波進行特徵擷取。為了減少硬體資源的消耗,GHA架構中在計算調整不同組權重值時皆共享相同一塊計算電路。因此,本論文所提出的架構同時擁有較低的晶片面積,以即使用了台積電90奈米製程和對於功率消耗優化之技術,使得在功率消耗的這部分也有良好的表現。最後由於使用了多通道的訊號輸入,本論文在棘波分類系統的吞吐量能有大幅的提升。

    第一章 緒論 1 1.1 研究背景與動機目的 1 1.2 全文架構 5 第二章 棘波分類之基礎介紹與演算法則 6 2.1棘波分類的介紹 6 2.2 棘波偵測演算法則 8 2.3 特徵擷取演算法則 9 2.4 多通道棘波輸入 11 第三章 棘波分類系統架構 17 3.1 NEO單元 18 3.2 Spike Buffer單元 20 3.3 GHA單元 22 3.4 Global Controller 單元 28 3.5 Clock Gating技術於電路中之實作 30 第四章 實驗數據與效能分析 31 4.1 開發平台與實驗環境介紹 31 4.2 實驗數據呈現與討論 35 第五章 結論 42 參考文獻 43

    [1]M.A. Lebedev and M.A.L. Nicolelis, “Brainmachine interfaces: past, present and future,” Trends in Neurosciences, Vol.29, pp.536-546, 2006.

    [2] E.E. Fetz, “Real-time control of a robotic arm by neuronal ensembles,” Natural Neural Science,Vol. 2, 00.583-584, 1999.

    [3] S. Hauck and A. Dehon, Reconfigurable Computing: The Theory and Practice of FPGA-Based Computing, Morgan Kaufmann: San Fransisco, CA, USA, 2008.

    [4] Roy H. Olsson III ,” A Three-Dimensional Neural Recording Microsystem
    With Implantable Data Compression Circuitry” IEEE Journal of solid-state circuits, Vol. 40, No. 12, December 2005

    [5] Moo Sung Chae, Zhi Yang, Mehmet R. Yuce, Linh Hoang, and Wentai Liu,” A 128-Channel 6 mW Wireless Neural Recording IC With Spike Feature Extraction and UWB Transmitter” IEEE Transactions On Nerual Systems And Rehabillitation Egineering, Vol. 17, No. 4, Augest 2009

    [6] Benoit Gosselin, Amer E. Ayoub, Jean-François Roy, Mohamad Sawan, FellowFranco Lepore, Avi Chaudhuri, andDaniel Guitton” A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction” IEEE Transactions On Biomedical Circutts And Systems, Vol. 3, No. 3, June 2009

    [7] T.-C. Chen, W. Liu and L.-G. Chen,“VLSI Architecture of Leading Eigenvector Generation for On-chip Principal Component Analysis Spike Sorting System,” Proc. 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, pp.3192-3195, 2008.

    [8] J. F. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP ’90), Albuquerque, NM, Apr. 1990, vol. 1, pp. 381–384.

    [9] S. Mukhopadhyay and G. Ray, “A new interpretation of nonlinear energy operator and its efficacy in spike detection,” IEEE Trans. Biomed.
    Eng., vol. 45, no. 2, pp. 180–187, Feb. 1998.

    [10] K. H. Kim and S. J. Kim, “Neural spike sorting under nearly 0-db signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier,” IEEE Trans. Biomed. Eng., vol. 47, no. 10, pp. 1406–1411, Oct. 2000.

    [11] I. Obeid and P. D. Wolf, “Evaluation of spike-detection algorithms for a brain-machine interface application,” IEEE Trans. Biomed. Eng., vol. 51, no. 6, pp. 905–911, Jun. 2004.

    [12] S.-J. Lin, Y.-T. Hung, and W.-J. Hwang, “Efficient hardware architecture based on generalized Hebbian algorithm for texture classification,” Neurocomputing, pp.3248-3256, 2011.

    [13] N. Sudha, A.R. Mohan, P.K. Meher, “A self-configurable systolic architecture for face recognition system based on principal component neural network,” IEEE Trans. Circuits Syst. Video Technol, Vol. 21, pp.1071-1084, 2011.

    [14] S. -J. Lin, W. -J. Hwang, andW. -H. Lee, “FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification,” Vol. 12, pp.6244-6268, Sensors, 2012.

    [15]S.-J. Lin, Y.-T. Hung, and W.-J. Hwang, “Efficient hardware architecture based on generalized Hebbian algorithm for texture classification,” Neurocomputing, pp.3248-3256, 2011.

    [16] N. Sudha, A.R. Mohan, P.K. Meher, “A self-configurable systolic architecture for face recognition system based on principal component neural network,” IEEE Trans. Circuits Syst. Video Technol, Vol. 21, pp.1071-1084, 2011.

    [17] S. -J. Lin, W. -J. Hwang, andW. -H. Lee, “FPGA Implementation of Generalized Hebbian Algorithm for Texture Classification,” Vol. 12, pp.6244-6268, Sensors, 2012.

    [18] Y.-J. Yeh, H.-Y. Li, C.-Y. Yang, and W.-J. Hwang, ”Fast Fuzzy C-Means Clustering Based on Low-Cost High-Performance VLSI Architecture in Reconfigurable Hardware,” pp.112-118, IEEE International Conference on Computational Science and Engineering, 2010.

    [19] Design Compiler® User Guide Version H-2013.03, March 2013

    [20] Y. Sun, S. Huang, J. J. Oresko, and A. C. Cheng, “Programmable Neural Processing on a Smartdust for Brain-Computer Interfaces,” IEEE Trans. Biomedical Circuits and Systems, Vol. 4, pp.265-273, 2010.

    [21] L. S. Smith and N. Mtetwa, “A tool for synthesizing spike trains with realistic interference,” Vol. 159, pp.170-180, Journal of Neuroscience Methods, 2007.

    [22] S. Haykin, Neural Networks and Learning Machines, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2009.

    [23] T.D. Sanger, “Optimal unsupervised learning in a single-layer linear feedforward neural network,” Neural Network, Vol. 12, pp.459-473, 1989.

    下載圖示
    QR CODE