簡易檢索 / 詳目顯示

研究生: 張譯文
論文名稱: 壹、利用乙基二苯膦 (EtPPh2) 催化醛類、丙烯酸酯類和丙二酸二乙酯的三組分反應 貳、帶有芳香官能基及氰基取代呋喃之合成方法開發
指導教授: 林文偉
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 204
中文關鍵詞: 呋喃三組分反應乙基二苯膦
英文關鍵詞: furan, three-component reactions
論文種類: 學術論文
相關次數: 點閱:180下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩部分,第一部分主要是以EtPPh2催化醛類、丙烯酸酯類和丙二酸二乙酯23a進行三組分反應,此反應在一步同時生成兩個新的碳-碳鍵。推測的反應機構是經由Morita-Baylis-Hillman反應,接著親核試劑進行Michael加成至Morita-Baylis-Hillman產物上。藉由改變催化劑種類、溶劑、催化劑劑量數、當量數及更換不同取代基探討不同條件對於反應性的影響,篩選出最佳化條件後,在室溫下反應4到21小時後可以得到具有高度官能基之化合物之三組分反應產物,其產率介於50%~63%之間。
      第二部分是合成四取代呋喃化合物,以帶有氰基的烯酮類42、三正丁基膦、醯氯46以及三乙基胺當鹼製備具有多芳香官能基及一個氰基的呋喃,反應時間為10分鐘到4小時,產率高達84~99%,為極其有效率的製備方法;反應機構推測是由三正丁基膦與化合物42進行Michael 加成後的產物在與46進行acylation ,接著去質子化形成中間體44,最後在進行分子內Wittig 反應而得呋喃分子。

    The dissertation is divided into two parts. The first part focuses on the EtPPh2 catalyzed three-component reactions of aldehyde, alkyl acrylate and dialkyl malonate in which two new carbon-carbon bonds form in one step. The reaction is proposed to proceed via the Morita-Baylis-Hillman reaction followed by the Michael addition of nucleophilic reagents toward the Morita-Baylis-Hillman adduct. The screening of reaction condition (types of catalysts, solvent, amount of reactants) were carefully examined. Under our optimized reaction condition, numerous highly functionalized compounds bearing the hydroxy group and ester functionality can be easily prepared at room temperature within 4 - 21 h in moderate yields (39~63%).
    The second part decribes the preparation of tetrasubstituted furans, bearing three aryl groups and a cyano group, starting from the Michael acceptor 42, tributylphosphine, and acyl chlorides 46. All the corresponding furans can be generated in one step at room temperature within 10 min to 4 h in high yields (84~99%). The reaction mechanism is proposed to undergo the Michael reaction of PBu3 toward 42 followed by acylation with 46, deprotonation of the corresponding intermediate 44, and an intramolecular Wittig reaction of 47.

    壹、利用乙基二苯膦催化醛類、丙烯酸酯類和丙二酸二乙酯的三組分反應 第一章 緒論 1 1-1 前言 1 1-2 double Morita-Baylis-Hillman 反應 3 1-2-1 原始發現 3 1-2-2 不同烯類的double MBH反應 4 1-3 double MBH反應之反應機構 5 1-4 double aza-MBH反應 7 1-5 經由MBH反應途徑的串聯式 (tandem) 反應 8 1-6 研究動機 11 第二章 實驗結果與討論 12 2-1 三組分反應之探討 12 2-1-1 催化劑效應 12 2-1-2 溶劑效應 12 2-1-3 催化劑量效應 13 2-1-4 當量數效應 14 2-1-5 取代基效應 15 2-2 反應機構之探討 20 2-3 結論 21 第三章 實驗部分 22 3-1 分析儀器及基本操作 22 3-2 實驗步驟及光譜數據 24 3-2-1 標準實驗步驟 24 3-2-2 光譜數據 24 3-3 參考文獻 39 貳、帶有芳香官能基及氰基取代呋喃之合成方法開發 第一章 緒論 40 1-1 前言 40 1-2 呋喃的合成方法 41 1-2-1呋喃分子官能基化 41 1-2-2 Paal-Knorr 呋喃合成反應 42 1-2-3 Feist- Bénary 呋喃合成反應 43 1-2-4過渡金屬催化合環反應 44 1-2-5 其他呋喃合成反應 44 1-3 近期具氰基多取代呋喃的合成方法 45 1-4 研究動機 46 第二章 實驗結果與討論 48 2-1 合成多芳香取代基之四取代呋喃 48 2-1-1不同起始物對於反應之影響 48 2-1-2不同醯氯對於反應之影響 50 2-2 反應機構的探討 52 2-3 結論 55 第三章 實驗部分 56 3-1 分析儀器及基本操作 57 3-2 實驗步驟及光譜數據 58 3-2-1 標準實驗步驟 58 3-2-2 光譜數據 58 3-3 起始物42之光譜數據 72 3-4 參考文獻 79 附錄一、1H-NMR、13C-NMR及31P-NMR光譜 80 附錄二、X-ray 單晶繞射結構解析 167

    [1]R. Mahrwald, Chem. Rev. 1999, 99, 1095.
    [2]A. Fuerstner, Synthesis 1989, 1989, 571.
    [3]F. Ziegler, Chem. Rev. 1988, 88, 1423.
    [4]W. Oppolzer, Angew. Chem., Int. Ed. Engl. 1984, 23, 876.
    [5]B. Maryanoff, A. Reitz, Chem. Rev. 1989, 89, 863.
    [6]E. Meyer, A. Meijere, Angew. Chem., Int. Ed. Engl 1994, 33, 2379.
    [7]A. Suzuki, N. Miyaura, Chem. Rev. 1995, 95, 2457.
    [8]D. Basavaiah, A. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811.
    [9]A. B. Baylis, M. E. D. Hillman, Chem. Abstr. 1972, 77, 34174q.
    [10]K.-i. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968, 41, 2815.
    [11]V. Singh, S. Batra, Tetrahedron 2008, 64, 4511.
    [12]G. N. Ma, J. J. Jiang, M. Shi, Y. Wei, Chem. Commun. 2009, 5496.
    [13]M. Shi, C. Li, J. Jiang, Chem. Commun. 2001, 2001, 833.
    [14]M. Shi, C. Li, J. Jiang, Molecules 2002, 7, 721.
    [15]M. Shi, C. Li, J. Jiang, Helv. chim. Acta 2002, 85, 1051.
    [16]M. Shi, C. Li, J. Jiang, Tetrahedron 2003, 59, 1181.
    [17]M. Shi, Y. Xu, J. Org. Chem. 2003, 68, 4784.
    [18]P. Kaye, R. Robinson, Synth. Commun. 1996, 26, 2085.
    [19]P. Kaye, X. Nocanda, J. Chem. Soc., Perkin Trans. 1 2000, 2000, 1331.
    [20]P. Kaye, X. Nocanda, J. Am. Chem. Soc. 2002, 2002, 1318.
    [21]S. Ravichandran, Synth. Commun. 2001, 31, 1233.
    [22]Y. Song, C. Lee, K. Lee, J. Heterocycl. Chem. 2003, 40, 939.
    [23]K. Lee, J. Kim, J. Kim, Synlett. 2003, 14, 357.
    [24]D. Virieux, A. Guillouzic, H. Cristau, Tetrahedron 2006, 62, 3710.
    [25]W. Wang, M. Yu, Tetrahedron Lett. 2004, 45, 7141.

    [26]C. Kao, J. Chern, J. Org. Chem 2002, 67, 6772.
    [27]L. Melzig, C. Rauhut, P. Knochel, Chem.Commun. 2009, 2009, 3536.
    [28]G. Minetto, L. Raveglia, A. Sega, M. Taddei, Eur. J. Org. Chem. 2005, 2005, 5277.
    [29]B. Ranu, L. Adak, S. Banerjee, Tetrahedron Lett. 2008, 49, 4613.
    [30]J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55, 3450.
    [31]X. Du, F. Song, Y. Lu, H. Chen, Y. Liu, Tetrahedron 2009, 65, 1839.
    [32]Z. Fu, M. Wang, Y. Ma, Q. Liu, J. Liu, J. Org. Chem. 2008, 73, 7625.
    [33]M.-C. Fernandez, A. Castano, E. Dominguez, A. Escribano, D. Jiang, A. Jimenez, E. Hong, W. J. Hornback, E. S. Nisenbaum, N. Rankl, E. Tromiczak, G. Vaught, H. Zarrinmayeh, D. M. Zimmerman, Bioorg. Med. Chem. Lett. 2006, 16, 5057.
    [34]S. b. Lethu, M. Ginisty, D. Bosc, J. l. Dubois, J. Med. Chem. 2009, 52, 6205.
    [35]M. Bakavoli, B. Feizyzadeh, M. Rahimizadeh, Tetrahedron Lett. 2006, 47, 8965.
    [36]C. Sun, S.-J. Ji, Y. Liu, Tetrahedron Lett. 2007, 48, 8987.
    [37]P. K. Amancha, Y.-C. Lai, I. C. Chen, H.-J. Liu, J.-L. Zhu, Tetrahedron 2010, 66, 871.

    無法下載圖示 本全文未授權公開
    QR CODE