簡易檢索 / 詳目顯示

研究生: 陳韋羽
Chen, Wei-Yu
論文名稱: 傳統中藥樟芝萃取物對棕櫚酸處理血管內皮細胞脂質累積的緩解作用
Alleviating effects of traditional Chinese medicine Antrodia cinnamomea extract on lipid accumulation in palmitic acid-treated vascular endothelial cells
指導教授: 吳忠信
Wu, Chung-Hsin
口試委員: 吳忠信
Wu, Chung-Hsin
沈賜川
Shen, Szu-Chuan
王佩華
Wang, Pei-Hwa
口試日期: 2022/12/19
學位類別: 碩士
Master
系所名稱: 生技醫藥產業碩士學位學程
Graduate Program of Biotechnology and Pharmaceutical Industries
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 36
中文關鍵詞: 高脂血症動脈粥樣硬化牛樟芝血管內皮細胞巨噬細胞氧化壓力細胞凋亡
英文關鍵詞: hyperlipidemia, atherosclerosis, Antrodia camphorata, vascular endothelial cells, macrophages, oxidative stress, apoptosis.
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300060
論文種類: 學術論文
相關次數: 點閱:115下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高脂血症是動脈粥樣硬化最主要的危險因素,過程涉及動脈粥樣硬化患者在早期時脂質於動脈內膜中的累積,而形成動脈粥樣硬化的過程中,血管內皮細胞、巨噬細胞的氧化壓力、細胞凋亡、CD36以及Kruppel-like factor 4(KLF4)蛋白質的表現均扮演重要角色。本研究嘗試探討牛樟芝萃取物對於動脈粥樣硬化的調節潛力,使用棕櫚酸(Palmitic acid)處理血管內皮細胞SVEC4-10與RAW264.7巨噬細胞作為高脂累積細胞模式,藉由胞外實驗(in vitro)評估牛樟芝萃取物對於高脂累積的緩解作用。本研究採用由牛樟芝萃取出的化合物,利用HPLC確定牛樟芝萃取物的化學指標活性成份,並用DPPH測定牛樟芝萃取物的自由基清除能力,再以油紅O染色法(Oil Red O Stain)檢視牛樟芝萃取物可否有效降低高脂累積內皮細胞SVEC4-10的油滴脂質累積,以酵素結合免疫吸附分析法(enzyme-linked immunosorbent assay, ELISA) 檢測牛樟芝萃取物可否有效降低炎性細胞因子TNF-α (tumor necrosis factor-α)、IL-1β(interleukin-1β)的表現量;利用細胞免疫螢光染色方法檢測牛樟芝萃取物是否有效降低CD36蛋白質表現以及增強KLF4蛋白質表現;利用遷移試驗(transwell migration assay)檢測牛樟芝萃取物是否增加RAW264.7巨噬細胞的移動能力來清除血管內皮細胞的脂質累積。本實驗結果顯示:此牛樟芝萃取物具備很好的自由基清除能力,可以顯著降低血管內皮細胞的油滴脂質累積,減少TNF-α、IL-1β以及CD36的表現量,但是增強KLF4蛋白質表現。此外,牛樟芝萃取物可以促進RAW264.7巨噬細胞的遷移能力。綜合上述結果,我們認為牛樟芝萃取物可以透過減少血管內皮細胞的油脂累積,抑制巨噬細胞的氧化壓力與細胞凋亡,來達到緩解高脂累積,以及調節動脈粥樣硬化的潛力。

    Hyperlipidemia is the most important risk factor for atherosclerosis (AS). The process involves the accumulation of lipids in the arterial intima in the early stage of AS patients, and oxidative stress and apoptosis, and expressions of CD36 and Kruppel-like factor 4 (KLF4) proteins in vascular endothelial cells and macrophages may play important roles in AS formation. This study attempted to investigate the therapeutic potential of Antrodia camphorata extract (ACE) for AS patients. In this experiment, palmitic acid (Palmitic acid; PA)-treated vascular endothelial SVEC4-10 cells and RAW264.7 macrophages were used as a cell model with lipid accumulation. Then alleviation effect of ACE on lipid accumulation was evaluated by in vitro experiment. We first extracted high-purity of extract from Antrodia camphorata, used high performance liquid chromatography (HPLC) to determine the chemical index active components of ACE, used α,α-diphenyl- β-pricrylhydrazyl (DPPH) assay to determine the free radical scavenging ability of ACE, used oil red dye staining to check whether ACE could effectively reduce oil droplet lipid accumulation in PA-treated SVEC 4-10 cells, used enzyme-linked immunosorbent assay (ELISA) to determine whether ACE can effectively reduce expressions of inflammatory cytokines of TNF-α and IL-1β of PA-treated SVEC 4-10 cells, used immunohistochemistry (IHC) staining to determine whether ACE could effectively reduce the expression of CD36 protein and enhance the expression of KLF4 protein of PA-treated SVEC 4-10 cells, and used migration assay to determine whether ACE could increase the mobility of RAW264.7 macrophages to clear hyperlipidemia SVEC4-10 cells. Our results showed that ACE has a good free radical scavenging ability, which could significantly alleviate the lipid accumulation in oil droplets, expressions of TNF-α, IL-1β and CD36 protein, but enhance KLF4 protein expression in hyperlipidemia SVEC4-10 cells. In addition, ACE could promote the migration ability of RAW264.7 macrophages to hyperlipidemia SVEC4-10 cells. We suggested that ACE may alleviate lipid accumulation and treat AS by reducing oil droplet lipid accumulation and alleviating oxidative stress and apoptosis in vascular endothelial cells and macrophages.

    謝誌 i 中文摘要 ii 英文摘要 iii 論文目錄 iv 圖目錄 vi 第一章 緒論 1 第二章 材料與方法 5 第一節 實驗藥品與儀器 5 第二節 牛樟芝萃取物的測定 7 第三節 1,1-二苯基-2-三硝基苯肼抗氧化能力測定 8 第四節 血管內皮細胞(SVEC4-10)高脂損害模式的建立 9 第五節 細胞存活率測試 10 第六節 油紅O染色 10 第七節 酵素結合免疫吸附分析法檢測細胞激素含量 11 第八節 細胞免疫螢光染色方法 12 第九節 巨噬細胞模式建立 13 第十節 細胞遷移試驗(transwell migration Assay) 13 第十一節 資料收集與統計分析 14 第三章 實驗結果 15 第一節 牛樟芝萃取物的HPLC圖譜 15 第二節 牛樟芝萃取物的抗氧化能力 16 第三節 棕櫚酸對血管內皮細胞的毒性 18 第四節 牛樟芝萃取物緩解棕櫚酸對血管內皮細胞的毒性 19 第五節 血管內皮細胞內脂質的累積 21 第六節 血管內皮細胞的發炎反應 22 第七節 KLF4與CD36的蛋白質表現 24 第八節 巨噬細胞向血管內皮細胞遷移的能力 26 第九節 巨噬細胞向血管內皮細胞遷移後的發炎反應 28 第四章 討論 29 第五章 結論 32 第六章 參考文獻 33

    Achudhan, D., Liu, S. C., Lin, Y. Y., Huang, C. C., Tsai, C. H., Ko, C. Y., Chiang, I. P., Kuo, Y. H., and Tang, C. H. (2021). Antcin K inhibits TNF-α, IL-1β and IL-8 expression in synovial fibroblasts and ameliorates cartilage degradation: implications for the treatment of rheumatoid arthritis. Frontiers in immunology, 12, 790925. https://doi.org/10.3389/fimmu.2021.790925
    Chappell, J., Harman, J. L., Narasimhan, V. M., Yu, H., Foote, K., Simons, B. D., Bennett, M. R., and Jørgensen, H. F. (2016). Extensive proliferation of a subset of fifferentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circulation research, 119(12), 1313–1323. https://doi.org/10.1161/CIRCRESAHA.116.309799
    Chen, Y. C., Liu, Y. L., Li, F. Y., Chang, C. I., Wang, S. Y., Lee, K. Y., Li, S. L., Chen, Y. P., Jinn, T. R., and Tzen, J. T. (2011). Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids. Acta pharmacologica sinica, 32(7), 904–911. https://doi.org/10.1038/aps.2011.36
    Chen, Y. T., Shen, Y. C., Chang, M. C., and Lu, M. K. (2016). Precursor-feeding strategy on the triterpenoid production and anti-inflammatory activity of Antrodia cinnamomea. Process biochemistry, 51(8), 941-949. https://doi.org/10.1016/j.procbio.2016.05.001
    Dahlöf, B. (2010). Cardiovascular disease risk factors: epidemiology and risk assessment. The American journal of cardiology, 105(1 Suppl), 3A–9A. https://doi.org/10.1016/j.amjcard.2009.10.007
    Du, Z., Lin, L., Li, Y., Sun, M., Liang, Q., Sun, Z., and Duan, J. (2022). Combined exposure to PM2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free radical biology and medicine, 190, 16–27. https://doi.org/10.1016/j.freeradbiomed.2022.07.024
    Feinberg, M. W., Cao, Z., Wara, A. K., Lebedeva, M. A., Senbanerjee, S., and Jain, M. K. (2005). Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. Journal of biological chemistry, 280(46), 38247–38258. https://doi.org/10.1074/jbc.M509378200
    Geethangili, M., and Tzeng, Y. M. (2011). Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-based complementary and alternative medicine: eCAM, 2011, 212641. https://doi.org/10.1093/ecam/nep108
    Gimbrone, M. A., Jr, and García-Cardeña, G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation research, 118(4), 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301
    Gimbrone, M. A., Jr, Topper, J. N., Nagel, T., Anderson, K. R., and Garcia-Cardeña, G. (2000). Endothelial dysfunction, hemodynamic forces, and atherogenesis. Annals of the New York academy of sciences, 902, 230–240. https://doi.org/10.1111/j.1749-6632.2000.tb06318.x
    Gyamfi, M. A., Yonamine, M., and Aniya, Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. General pharmacology: The vascular system, 32(6), 661–667. https://doi.org/10.1016/s0306-3623(98)00238-9
    Hamik, A., Lin, Z., Kumar, A., Balcells, M., Sinha, S., Katz, J., Feinberg, M. W., Gerzsten, R. E., Edelman, E. R., and Jain, M. K. (2007). Kruppel-like factor 4 regulates endothelial inflammation. Journal of biological chemistry, 282(18), 13769–13779. https://doi.org/10.1074/jbc.M700078200
    Hellings, W. E., Moll, F. L., De Vries, J. P., Ackerstaff, R. G., Seldenrijk, K. A., Met, R., Velema, E., Derksen, W. J., De Kleijn, D. P., and Pasterkamp, G. (2008). Atherosclerotic plaque composition and occurrence of restenosis after carotid endarterectomy. Journal of the American medical association, 299(5), 547–554. https://doi.org/10.1001/jama.299.5.547
    Hwang, S. J., Song, Y. S., and Lee, H. J. (2021). Phaseolin attenuates lipopolysaccharide-induced inflammation in RAW 264.7 cells and zebrafish. Biomedicines, 9(4), 420. https://doi.org/10.3390/biomedicines9040420
    Kunjathoor, V. V., Febbraio, M., Podrez, E. A., Moore, K. J., Andersson, L., Koehn, S., Rhee, J. S., Silverstein, R., Hoff, H. F., and Freeman, M. W. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. Journal of biological chemistry, 277(51), 49982–49988. https://doi.org/10.1074/jbc.M209649200
    Kuo, Y. H., Lin, C. H., Shih, C. C., and Yang, C. S. (2016). Antcin K, a triterpenoid compound from Antrodia camphorata, displays antidiabetic and antihyperlipidemic effects via glucose transporter 4 and AMP-activated protein kinase phosphorylation in muscles. Evidence-based complementary and alternative medicine: eCAM, 2016, 4867092. https://doi.org/10.1155/2016/4867092
    Lai, C. I., Chu, Y. L., Ho, C. T., Su, Y. C., Kuo, Y. H., and Sheen, L. Y. (2016). Antcin K, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces mitochondria and endoplasmic reticulum stress-mediated apoptosis in human hepatoma cells. Journal of traditional and complementary medicine, 6(1), 48–56. https://doi.org/10.1016/j.jtcme.2014.11.026
    Li, H., Horke, S., and Förstermann, U. (2014). Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis, 237(1), 208–219. https://doi.org/10.1016/j.atherosclerosis.2014.09.001
    Libby, P., Aikawa, M., and Schönbeck, U. (2000). Cholesterol and atherosclerosis. Biochimica et biophysica acta, 1529(1-3), 299–309. https://doi.org/10.1016/s1388-1981(00)00161-x
    Luo, Y., Rana, P., and Will, Y. (2012). Palmitate increases the susceptibility of cells to drug-induced toxicity: an in vitro method to identify drugs with potential contraindications in patients with metabolic disease. Toxicological sciences, 129(2), 346–362. https://doi.org/10.1093/toxsci/kfs208
    Lusis A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–241. https://doi.org/10.1038/35025203
    Merckelbach, S., Leunissen, T., Vrijenhoek, J., Moll, F., Pasterkamp, G., and de Borst, G. J. (2016). Clinical risk factors and plaque characteristics associated with new development of contralateral stenosis in patients undergoing carotid endarterectomy. Cerebrovascular diseases, 42(1-2), 122–130. https://doi.org/10.1159/000445529
    Moore, K. J., and Tabas, I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell, 145(3), 341–355. https://doi.org/10.1016/j.cell.2011.04.005
    Moore, K. J., Sheedy, F. J., and Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nature reviews immunology, 13(10), 709–721. https://doi.org/10.1038/nri3520
    Oh, S., Son, M., Lee, H. S., Kim, H. S., Jeon, Y. J., and Byun, K. (2018). Protective effect of pyrogallol-phloroglucinol-6,6-bieckol from Ecklonia cava on monocyte-associated vascular dysfunction. Marine drugs, 16(11), 441. https://doi.org/10.3390/md16110441
    Robbins, C. S., Chudnovskiy, A., Rauch, P. J., Figueiredo, J. L., Iwamoto, Y., Gorbatov, R., Etzrodt, M., Weber, G. F., Ueno, T., van Rooijen, N., Mulligan-Kehoe, M. J., Libby, P., Nahrendorf, M., Pittet, M. J., Weissleder, R., and Swirski, F. K. (2012). Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation, 125(2), 364–374. https://doi.org/10.1161/CIRCULATIONAHA.111.061986
    Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y., Figueiredo, J. L., Gorbatov, R., Sukhova, G. K., Gerhardt, L. M., Smyth, D., Zavitz, C. C., Shikatani, E. A., Parsons, M., van Rooijen, N., Lin, H. Y., Husain, M., Libby, P., Nahrendorf, M., Weissleder, R., and Swirski, F. K. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature medicine, 19(9), 1166–1172. https://doi.org/10.1038/nm.3258
    Serbina, N. V., and Pamer, E. G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature immunology, 7(3), 311–317. https://doi.org/10.1038/ni1309
    Shankman, L. S., Gomez, D., Cherepanova, O. A., Salmon, M., Alencar, G. F., Haskins, R. M., Swiatlowska, P., Newman, A. A., Greene, E. S., Straub, A. C., Isakson, B., Randolph, G. J., and Owens, G. K. (2015). KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nature medicine, 21(6), 628–637. https://doi.org/10.1038/nm.3866
    Shekelle, R. B., Shryock, A. M., Paul, O., Lepper, M., Stamler, J., Liu, S., and Raynor, W. J., Jr (1981). Diet, serum cholesterol, and death from coronary heart disease. The Western Electric study. The new England journal of medicine, 304(2), 65–70. https://doi.org/10.1056/NEJM198101083040201
    Shen, C. C., Shen, Y. C., Wang, Y. H., Lin, L. C., Don, M. J., Liou, K. T., Wang, W. Y., Hou, Y. C., and Chang, T. T. (2006). New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes. Planta medica, 72(3), 199–203. https://doi.org/10.1055/s-2005-916175
    Shen, C. C., Wang, Y. H., Chang, T. T., Lin, L. C., Don, M. J., Hou, Y. C., Liou, K. T., Chang, S., Wang, W. Y., Ko, H. C., and Shen, Y. C. (2007). Anti-inflammatory ergostanes from the basidiomata of Antrodia salmonea. Planta medica, 73(11), 1208–1213. https://doi.org/10.1055/s-2007-981591
    Shen, C., Kuo, Y., Huang, R., Lin, L., Don, M., Chang, T., and Chou, C.J. (2003). New Ergostane and Lanostane from Antrodia Camphorata. The journal of Chinese medicine, 14(2), 247–258.
    Tabas I. (2010). Macrophage death and defective inflammation resolution in atherosclerosis. Nature reviews immunology, 10(1), 36–46. https://doi.org/10.1038/nri2675
    Virmani, R., Burke, A. P., Kolodgie, F. D., and Farb, A. (2002). Vulnerable plaque: the pathology of unstable coronary lesions. Journal of interventional cardiology, 15(6), 439–446. https://doi.org/10.1111/j.1540-8183.2002.tb01087.x
    Wang, Y. J., Lee, S. C., Hsu, C. H., Kuo, Y. H., Yang, C. C., and Lin, F. J. (2019). Antcins, triterpenoids from Antrodia cinnamomea, as new agonists for peroxisome proliferator-activated receptor α. Journal of food and drug analysis, 27(1), 295–304. https://doi.org/10.1016/j.jfda.2018.11.004
    Yan, F. F., Liu, Y. F., Liu, Y., and Zhao, Y. X. (2008). KLF4: a novel target for the treatment of atherosclerosis. Medical hypotheses, 70(4), 845–847. https://doi.org/10.1016/j.mehy.2007.07.031
    Zhang, X. F., Yang, Y., Yang, X. Y., and Tong, Q. (2018). MiR-188-3p upregulation results in the inhibition of macrophage proinflammatory activities and atherosclerosis in ApoE-deficient mice. Thrombosis research, 171, 55–61. https://doi.org/10.1016/j.thromres.2018.09.043

    下載圖示
    QR CODE