研究生: |
張庭豪 Zhang, Ting-Hao |
---|---|
論文名稱: |
糖類滲透物用於抑制人類降鈣素聚集 Use of sugar osmolytes in inhibiting human calcitonin aggregation |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
口試委員: |
杜玲嫻
Tu, Ling-Hsien 劉維民 Liu, Wei-Min 李以仁 Lee, I-Ren |
口試日期: | 2023/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 人類降鈣素 、錯誤摺疊 、聚集 、類澱粉蛋白纖維 、糖類滲透物 |
英文關鍵詞: | human calcitonin, misfolding, aggregation, amyloid fibrils, sugar osmolytes |
DOI URL: | http://doi.org/10.6345/NTNU202300806 |
論文種類: | 學術論文 |
相關次數: | 點閱:131 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
胜肽的不可逆聚集現象嚴重限制了其作為藥物的生物利用度和治療活性,因此有效抑制胜肽聚集是一個重要的挑戰。人類降鈣素(Human calcitonin, hCT)是一種32個胺基酸組成的胜肽激素,由甲狀腺(Thyroid gland)中的濾泡旁細胞(Parafollicular cells)分泌,具有調節血鈣水平和維持骨骼結構的生理功能,因此在治療骨骼相關疾病,如骨質疏鬆症和佩吉特氏症(Paget's Disease),方面具有潛在價值。然而,hCT具有高度聚集的傾向,容易形成類澱粉蛋白纖維(Amyloid fibril),這可能降低其原有功能並限制其作為藥物的應用潛力。目前臨床上,鮭魚降鈣素鮭魚降鈣素(Salmon calcitonin, sCT)因其較高的生物活性和極低的聚集傾向而取代了hCT成為廣泛使用的胜肽藥物,但由於sCT與hCT之間的序列相似性較低,患者在使用後可能產生嚴重的副作用和免疫反應,因此尋找有效抑制hCT聚集並保持其治療活性的方法便十分重要。
在本實驗中,我們透過一系列實驗,加入不同滲透物小分子,並利用不同濃度去觀察其對於hCT生成類澱粉蛋白纖維的影響,最後發現了具有葡萄糖分子的糖類滲透物對於hCT生成類澱粉蛋白纖維是具有延緩效果的。透過這些實驗結果,我們期望能尋求可用來穩定hCT的藥物添加物,並有助於設計對抗類澱粉蛋白變性疾病(Amyloidosis)之藥品。
The irreversible aggregation of peptides severely limits their bioavailability and therapeutic efficacy as drugs, making the effective inhibition of peptide aggregation a critical challenge. Human calcitonin (hCT), a peptide hormone composed of 32 amino acids, is secreted by parafollicular cells in the thyroid gland. It plays a vital role in regulating blood calcium levels and maintaining skeletal integrity, making it a potential candidate for the treatment of bone-related disorders such as osteoporosis and Paget's disease. However, hCT exhibits a high propensity for forming amyloid fibrils through aggregation, which can diminish its native functionality and hinder its therapeutic potential as a drug. Currently, salmon calcitonin (sCT) has been widely used as a peptide drug due to its higher bioactivity and significantly lower aggregation tendency compared to hCT. Unfortunately, the low sequence homology between sCT and hCT results in severe side effects and immune reactions in patients. Therefore, the development of effective strategies to inhibit hCT aggregation while preserving its therapeutic activity is of paramount importance.
In this experiment, we conducted a series of experiments by introducing different small molecule osmolytes and observing their effects on the formation of amyloid fibrils by hCT at various concentrations. Ultimately, we discovered that a simple glucose-based sugar osmolyte exhibited inhibitory effects on the generation of amyloid fibrils by hCT. Based on these experimental results, we aim to identify pharmaceutical additives that can stabilize hCT and contribute to the design of drugs against amyloidosis, a group of disorders characterized by the deposition of amyloid fibrils.
1. Sipe, J.D., et al., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 2016. 23(4): p. 209-213.
2. Yadav, K., et al., Protein misfolding diseases and therapeutic approaches. Current Protein and Peptide Science, 2019. 20(12): p. 1226-1245.
3. Hashimoto, M., et al., Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular medicine, 2003. 4: p. 21-35.
4. Facchinetti, R., M.R. Bronzuoli, and C. Scuderi, An animal model of Alzheimer disease based on the intrahippocampal injection of amyloid β-peptide (1–42). Neurotrophic Factors: Methods and Protocols, 2018: p. 343-352.
5. Schmitz, O., B. Brock, and J. Rungby, Amylin agonists: a novel approach in the treatment of diabetes. Diabetes, 2004. 53(suppl_3): p. S233-S238.
6. Pilkington, E.H., et al., Effects of protein corona on IAPP amyloid aggregation, fibril remodelling, and cytotoxicity. Scientific Reports, 2017. 7(1): p. 2455.
7. Xue, W.-F., S.W. Homans, and S.E. Radford, Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proceedings of the National Academy of Sciences, 2008. 105(26): p. 8926-8931.
8. Pryor, N.E., M.A. Moss, and C.N. Hestekin, Unraveling the early events of amyloid-β protein (Aβ) aggregation: techniques for the determination of Aβ aggregate size. International Journal of Molecular Sciences, 2012. 13(3): p. 3038-3072.
9. Biancalana, M. and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2010. 1804(7): p. 1405-1412.
10. Kumar, S. and J. Walter, Phosphorylation of amyloid beta (Aβ) peptides–A trigger for formation of toxic aggregates in Alzheimer's disease. Aging (Albany NY), 2011. 3(8): p. 803.
11. Sgarbossa, A., Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. International journal of molecular sciences, 2012. 13(12): p. 17121-17137.
12. Fowler, D.M., et al., Functional amyloid–from bacteria to humans. Trends in biochemical sciences, 2007. 32(5): p. 217-224.
13. Gras, S.L., L.J. Waddington, and K.N. Goldie, Transmission electron microscopy of amyloid fibrils. Protein Folding, Misfolding, and Disease: Methods and Protocols, 2011: p. 197-214.
14. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005. 1751(2): p. 119-139.
15. Calero, M. and M. Gasset, Fourier transform infrared and circular dichroism spectroscopies for amyloid studies. Amyloid Proteins: Methods and Protocols, 2005: p. 129-151.
16. Tuttle, M.D., et al., Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature structural & molecular biology, 2016. 23(5): p. 409-415.
17. Tycko, R., Molecular structure of aggregated amyloid-β: insights from solid-state nuclear magnetic resonance. Cold Spring Harbor perspectives in medicine, 2016. 6(8): p. a024083.
18. Zhou, R., Replica exchange molecular dynamics method for protein folding simulation. Methods Mol Biol, 2007. 350: p. 205-23.
19. Buxbaum, J.N., et al., Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid, 2022. 29(4): p. 213-219.
20. Copp, D.H., et al., Evidence for calcitonin—a new hormone from the parathyroid that lowers blood calcium. Endocrinology, 1962. 70(5): p. 638-649.
21. Austin, L.A. and H. Heath III, Calcitonin: physiology and pathophysiology. New England Journal of Medicine, 1981. 304(5): p. 269-278.
22. Naot, D. and J. Cornish, The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone, 2008. 43(5): p. 813-818.
23. Pondel, M., Calcitonin and calcitonin receptors: bone and beyond. International journal of experimental pathology, 2000. 81(6): p. 405-422.
24. Ji, M.-X. and Q. Yu, Primary osteoporosis in postmenopausal women. Chronic diseases and translational medicine, 2015. 1(01): p. 9-13.
25. HINES, S.E., Paget's disease of bone: A new philosophy of treatment. Patient Care, 1999. 33(20): p. 40-40.
26. Chestnut, C., A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the Prevent Reoccurrence of Osteoporotic Fractures Study. Am J Med, 2000. 109: p. 267-276.
27. Chesnut, C.r., et al., Salmon calcitonin: a review of current and future therapeutic indications. Osteoporosis international, 2008. 19: p. 479-491.
28. Arvinte, T., A. Cudd, and A. Drake, The structure and mechanism of formation of human calcitonin fibrils. Journal of Biological Chemistry, 1993. 268(9): p. 6415-6422.
29. Pun, K. and L. Chan, Analgesic effect of intranasal salmon calcitonin in the treatment of osteoporotic vertebral fractures. Clinical therapeutics, 1989. 11(2): p. 205-209.
30. Peel, N., Bone remodelling and disorders of bone metabolism. Surgery (Oxford), 2009. 27(2): p. 70-74.
31. Liang, W., et al., Mechanical stimuli-mediated modulation of bone cell function—implications for bone remodeling and angiogenesis. Cell and Tissue Research, 2021: p. 1-10.
32. Nicholson, G., et al., Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. The Journal of clinical investigation, 1986. 78(2): p. 355-360.
33. Pondel, M., Calcitonin and calcitonin receptors: bone and beyond. Int J Exp Pathol, 2000. 81(6): p. 405-22.
34. Simmons, R.E., et al., Renal metabolism of calcitonin. American Journal of Physiology-Renal Physiology, 1988. 254(4): p. F593-F600.
35. Cudd, A., et al., Enhanced potency of human calcitonin when fibrillation is avoided. Journal of pharmaceutical sciences, 1995. 84(6): p. 717-719.
36. Yancey, P.H., Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. Journal of experimental biology, 2005. 208(15): p. 2819-2830.
37. Macchi, F., et al., The effect of osmolytes on protein fibrillation. International journal of molecular sciences, 2012. 13(3): p. 3801-3819.
38. Yancey, P.H. and J.F. Siebenaller, Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. The Journal of experimental biology, 2015. 218(12): p. 1880-1896.
39. Gekko, K. and S.N. Timasheff, Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry, 1981. 20(16): p. 4667-4676.
40. Kaushik, J.K. and R. Bhat, Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. The Journal of Physical Chemistry B, 1998. 102(36): p. 7058-7066.
41. Kaushik, J.K. and R. Bhat, Why Is Trehalose an Exceptional Protein Stabilizer?: An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. Journal of Biological Chemistry, 2003. 278(29): p. 26458-26465.
42. Bashir, S., et al., Biophysical elucidation of fibrillation inhibition by sugar osmolytes in α-lactalbumin: multispectroscopic and molecular docking approaches. Acs Omega, 2020. 5(41): p. 26871-26882.
43. 陳昱傑, 具多巴胺與五胜肽 DFNKF 修飾的中孔洞氧化矽奈米粒子對人類降鈣素聚集之影響, in 化學系. 2021, 國立臺灣師範大學: 台北市. p. 85.
44. LeVine III, H., [18] Quantification of β-sheet amyloid fibril structures with thioflavin T, in Methods in enzymology. 1999, Elsevier. p. 274-284.
45. Khurana, R., et al., Mechanism of thioflavin T binding to amyloid fibrils. Journal of structural biology, 2005. 151(3): p. 229-238.
46. Wei, Y., A.A. Thyparambil, and R.A. Latour, Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230 nm. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2014. 1844(12): p. 2331-2337.
47. Zeta-potential & Particle size Analyzer ELSZ-2000 series. Available from : www.otsukael.com/product/detail/productid/1.
48. Berg, J.M. and J.L. Tymoczko, Biochemistry/Jeremy M. Berg, John L. Tymoczko, Lubert Stryer; web content by Neil D. Clarke, International edition ed. 2012.
49. The principle and method of polyacrylamide gel electrophoresis (SDS-PAGE) Available from : https://ruo.mbl.co.jp/bio/e/support/method/sds-page.html.
50. Liddle, G.W. and J.G. Hardman, Cyclic adenosine monophosphate as a mediator of hormone action. New England Journal of Medicine, 1971. 285(10): p. 560-566.