研究生: |
柯雅云 Ko, Ya-Yun |
---|---|
論文名稱: |
遺傳背景對於阿茲海默氏症模式小鼠之影響 The impact of genetic background on Alzheimer’s disease mouse model |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 102 |
中文關鍵詞: | 阿茲海默氏症 、3基因轉殖鼠 、雜交品系 、遺傳背景 、Aβ 、Tau |
英文關鍵詞: | Alzheimer’s disease, 3TG transgenic mice, hybrid strain, genetic background, Aβ, tau |
DOI URL: | http://doi.org/10.6345/NTNU201900152 |
論文種類: | 學術論文 |
相關次數: | 點閱:156 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症為一種最常見的失智症,分為兩種類型:早發性的家族遺傳型阿茲海默氏症(Familial Alzheimer’s disease, FAD)及晚發性的偶發型阿茲海默氏症(Sporadic Alzheimer’s disease, SAD)。家族遺傳型阿茲海默氏症是因為基因的突變所導致,如:類澱粉蛋白前驅蛋白(amyloid precursor protein, APP)、早老素(Presenilin-1, PS1、Presenilin-2, PS2)的突變;而偶發型阿茲海默氏症可能受環境、飲食習慣、壓力及年紀等因素影響。阿茲海默氏症主要的病徵有β類澱粉蛋白(Aβ)堆積在細胞外形成類澱粉斑塊,及tau蛋白過度磷酸化導致神經細胞內的神經纖維糾結,而這些最終都會導致神經細胞的死亡。在過去幾十年,臨床的實驗只能夠延緩阿茲海默氏症病程的發展,卻無法有效的治療這個疾病。良好的動物模式對於實驗的進行是十分重要的,但在實驗室以往的經驗中我們發現B6.129-Psen1tm1Mpm Tg (APPSwe, tauP301L) 1Lfa/J這種3基因轉殖鼠所顯現的性狀並不明顯,而且不容易準備相同遺傳背景的野生鼠作為實驗控制組。為了要有一個更具代表性的實驗動物,我們將此基因轉殖鼠的品系從B6.129雜交品系回交配成B6的純品系,並以行為實驗進行B6純品系3基因轉殖小鼠短期記憶、長期記憶、焦慮、運動能力的評估。我們發現B6.129雜交3基因轉殖小鼠不論在6、9、12、18月大,運動能力都顯著低於野生型B6小鼠及B6純品系 3基因轉殖小鼠,而B6純品系 3基因轉殖小鼠與野生型B6小鼠之間沒有顯著的差異,但在焦慮行為測試中顯示B6.129雜交鼠較無焦慮情形。另外利用西方墨點法測量小鼠海馬迴各種蛋白質的表現量,我們發現12月大B6.129雜交3基因轉殖小鼠及18月大B6純品系3基因轉殖小鼠則在Aβ的表現量相較於野生型小鼠有顯著的上升。Tau蛋白的表現量及202、396位點磷酸化程度則是兩種品系的3基因轉殖小鼠從6月大起都顯著的高於野生型小鼠,而腦片染色結果也可以發現B6純品系3基因轉殖小鼠及B6.129雜交3基因轉殖小鼠從9個月大開始其Tau蛋白202位點的螢光強度就顯著的高於野生型小鼠。除此之外,在檢查多種磷酸化Tau蛋白的激酶後我們發現12及18月大B6品系的3基因轉殖小鼠pERK的表現量顯著的高於野生型及B6.129雜交3基因轉殖小鼠,我們發現pERK的訊號與NeuN的訊號有共表現的狀況,確認ERK的活化是在神經細胞中,因此我們認為Tau蛋白的磷酸化可能是經由ERK活化所引起的。而利用腦片染色方式檢測小鼠腦中Iba1及GFAP數量發現三組小鼠間微膠細胞及星狀膠細胞數量差異不大,因此我們認為B6純品系3基因轉殖小鼠及B6.129雜交3基因轉殖小鼠沒有膠細胞過度增生的情況。我們在行為測試中發現B6.129雜交3基因轉殖小鼠發病情形較為嚴重,但在蛋白質含量測試上發現B6品系3基因轉殖小鼠tau磷酸化程度較高。因此,未來需要進一步確認B6品系3基因轉殖小鼠在阿茲海默氏症上研究的可行性。
Alzheimer’s disease (AD) is the most common form of dementia and can be classified into two major types, the early-onset Familial Alzheimer’s disease (FAD) and the late-onset Sporadic Alzheimer’s disease (SAD). FAD is caused by genetic mutation, such as mutations of genes encoding amyloid precursor protein (APP), Presenilin-1 (PS1) and Presenilin-2 (PS2). SAD is caused by the environmental factors, including eating habits, stress, and age. AD pathological features are amyloid plaques formed by beta-amyloid (Aβ) accumulation outside of neurons and neurofibrillary tangle caused by tau protein hyperphosphorylation inside of neurons; these effects ultimately result in neuronal death. Current treatments can only slow down the course of AD, but cannot cure this disease. Animal model is critical for pathomechanism and therapeutic investigation. The 3TG mouse model, B6.129-Psen1tm1Mpm Tg (APPSwe, tauP301L) 1Lfa/J is a commonly used model for AD. However, this model only showed mild phenotype in our previous study and it is hard to prepare hybrid wild-type mice for comparison. We backcrossed the 3TG mice into pure B6 genetic background. We compared the locomotor activity, anxiety, short-term and long-term memory of these mice. We found that B6.129 3TG mice had lower locomotor activity and anxiety than B6 WT and B6 3TG mice. The short term memory analyzed by Y maze test showed B6 3TG mice and B6.129 3TG mice both have lower alternative rate at 12 month than B6 WT mice, and there is no difference between B6 3TG mice and B6 WT mice. In addition, we also analyzed the expression levels of many protein in hippocampus. We found that B6.129 3TG mice have higher Aβ level than WT mice at 12 month old, and B6 3TG mice have higher Aβlevel than WT mice at 18 month old. B6 3TG mice have higher tau and phosphorylation level at serine 202 and 396 at 12 and 18 month old than WT mice. The results of immunostaining of brain sections show that pS202Tau of B6 and B6.129 3TG mice is higher than WT mice since 9 months old. Among the several kinases that phosphorylate tau, we found that pERK level in B6 3TG mice is higher than WT and B6.129 3TG mice. In addition, we found that the pERK signal was colocalized with NeuN signal. Thus, we suggest that pERK might be the kinase involved in tau protein phosphorylation in B6 3TG mice. The Iba1 and GFAP staining in brain sections only have slight differences among three groups, which reveals B6 and B6.129 3TG models didn’t have the problem of gliosis. We found that B6.129 3TG mice have faster progression of disease, however, B6 3TG mice have higher tau phosphorylation. Therefore, we have to further investigate the feasibility of B6 3TG mice in AD study.
Achilli F et al. (2009) An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Disease models & mechanisms 2:359-373.
Adams SJ, DeTure MA, McBride M, Dickson DW, Petrucelli L (2010) Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PloS one 5:e10810.
Aliev G, Palacios HH, Gasimov E, Obrenovich ME, Morales L, Leszek J, Bragin V, Solis Herrera A, Gokhman D (2010) Oxidative Stress Induced Mitochondrial Failure and Vascular Hypoperfusion as a Key Initiator for the Development of Alzheimer Disease. Pharmaceuticals 3:158-187.
Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nature medicine 2:783-787.
Arrasate M, Perez M, Armas-Portela R, Avila J (1999) Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS letters 446:199-202.
Bailey RM, Howard J, Knight J, Sahara N, Dickson DW, Lewis J (2014) Effects of the C57BL/6 strain background on tauopathy progression in the rTg4510 mouse model. Molecular neurodegeneration 9:8.
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45:675-688.
Blanchard BJ, devi Raghunandan R, Roder HM, Ingram VM (1994) Hyperphosphorylation of human TAU by brain kinase PK40erk beyond phosphorylation by cAMP-dependent PKA: relation to Alzheimer's disease. Biochemical and biophysical research communications 200:187-194.
Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain research Brain research reviews 33:95-130.
Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid beta protein from a mutant amyloid beta protein precursor. Science 259:514-516.
Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimer's & dementia : the journal of the Alzheimer's Association 12:719-732.
Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, Leapman RD, Nicoll RA, Reese TS (2015) PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proceedings of the National Academy of Sciences of the United States of America 112:E6983-6992.
Chen X, Nelson CD, Li X, Winters CA, Azzam R, Sousa AA, Leapman RD, Gainer H, Sheng M, Reese TS (2011) PSD-95 is required to sustain the molecular organization of the postsynaptic density. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:6329-6338.
Chi S, Yu JT, Tan MS, Tan L (2014) Depression in Alzheimer's disease: epidemiology, mechanisms, and management. Journal of Alzheimer's disease : JAD 42:739-755.
Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature 360:672-674.
Cunha C, Brambilla R, Thomas KL (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3:1.
DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Experimental neurology 149:329-340.
Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Molecular biology of the cell 3:1141-1154.
Ernfors P, Wetmore C, Olson L, Persson H (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5:511-526.
Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7-19.
Feld M, Krawczyk MC, Sol Fustinana M, Blake MG, Baratti CM, Romano A, Boccia MM (2014) Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer's disease. Journal of Alzheimer's disease : JAD 40:69-82.
Ferrer I, Marin C, Rey MJ, Ribalta T, Goutan E, Blanco R, Tolosa E, Marti E (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. Journal of neuropathology and experimental neurology 58:729-739.
Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proceedings of the National Academy of Sciences of the United States of America 95:15712-15717.
Hall AM, Roberson ED (2012) Mouse models of Alzheimer's disease. Brain research bulletin 88:3-12.
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353-356.
Hasegawa M, Smith MJ, Goedert M (1998) Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly. FEBS letters 437:207-210.
Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, Mughal M, Rebeck GW, LaFerla FM, Mattson MP, Iwata N, Saido TC, Klein WL, Duff KE, Aisen PS, Matsuoka Y (2008) Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model. Brain research 1216:92-103.
Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, Geschwind DH, Bird TD, McKeel D, Goate A, Morris JC, Wilhelmsen KC, Schellenberg GD, Trojanowski JQ, Lee VM (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914-1917.
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99-102.
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human molecular genetics 13:159-170.
Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, Houlden H, Rossor MN, Collinge J (2003) Early onset familial Alzheimer's disease: Mutation frequency in 31 families. Neurology 60:235-239.
Jiao SS, Shen LL, Zhu C, Bu XL, Liu YH, Liu CH, Yao XQ, Zhang LL, Zhou HD, Walker DG, Tan J, Gotz J, Zhou XF, Wang YJ (2016) Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer's disease. Translational psychiatry 6:e907.
Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer's disease: age-dependent switch in the microglial phenotype from alternative to classic. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:11650-11661.
Jouanne M, Rault S, Voisin-Chiret AS (2017) Tau protein aggregation in Alzheimer's disease: An attractive target for the development of novel therapeutic agents. European journal of medicinal chemistry 139:153-167.
Ksiezak-Reding H, Liu WK, Yen SH (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain research 597:209-219.
Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annual review of neuroscience 24:1121-1159.
Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487-1491.
Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:10576-10586.
Maezawa I, Zimin PI, Wulff H, Jin LW (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. The Journal of biological chemistry 286:3693-3706.
Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM (2010) Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 120:1774-1785.
Matos TJ, Duarte CB, Goncalo M, Lopes MC (2005) Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line. Immunology and cell biology 83:607-614.
McDole B, Isgor C, Pare C, Guthrie K (2015) BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. Neuroscience 304:146-160.
Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451:720-724.
Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. Journal of neuroimmunology 210:3-12.
Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L (2013) Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiology of aging 34:1523-1529.
Musazzi L, Rimland JM, Ieraci A, Racagni G, Domenici E, Popoli M (2014) Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. The international journal of neuropsychopharmacology 17:779-791.
Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nature medicine 15:331-337.
O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annual review of neuroscience 34:185-204.
Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003a) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer's disease. Neurobiology of aging 24:1063-1070.
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003b) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409-421.
Pelcovits A, Marriotti R, Heath J, Perry G, Castellani RJ (2015) Simultaneous onset of Alzheimer's disease in a husband and wife in their mid-fifties: what do we really know about environmental factors? The open neurology journal 9:1-3.
Perry G, Roder H, Nunomura A, Takeda A, Friedlich AL, Zhu X, Raina AK, Holbrook N, Siedlak SL, Harris PL, Smith MA (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport 10:2411-2415.
Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90:397-406.
Pruunsild P, Sepp M, Orav E, Koppel I, Timmusk T (2011) Identification of cis-elements and transcription factors regulating neuronal activity-dependent transcription of human BDNF gene. The Journal of neuroscience : the official journal of the Society for Neuroscience 31:3295-3308.
Raux G, Guyant-Marechal L, Martin C, Bou J, Penet C, Brice A, Hannequin D, Frebourg T, Campion D (2005) Molecular diagnosis of autosomal dominant early onset Alzheimer's disease: an update. Journal of medical genetics 42:793-795.
Roder HM, Eden PA, Ingram VM (1993) Brain protein kinase PK40erk converts TAU into a PHF-like form as found in Alzheimer's disease. Biochemical and biophysical research communications 193:639-647.
Rothman SM, Herdener N, Camandola S, Texel SJ, Mughal MR, Cong WN, Martin B, Mattson MP (2012) 3xTgAD mice exhibit altered behavior and elevated Abeta after chronic mild social stress. Neurobiology of aging 33:830 e831-812.
Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TS (2013) A network map of BDNF/TRKB and BDNF/p75NTR signaling system. Journal of cell communication and signaling 7:301-307.
Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proceedings of the National Academy of Sciences of the United States of America 97:14731-14736.
Schafe GE, Doyere V, LeDoux JE (2005) Tracking the fear engram: the lateral amygdala is an essential locus of fear memory storage. The Journal of neuroscience : the official journal of the Society for Neuroscience 25:10010-10014.
Selkoe DJ, Schenk D (2003) Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Annual review of pharmacology and toxicology 43:545-584.
Sengupta U, Nilson AN, Kayed R (2016) The Role of Amyloid-beta Oligomers in Toxicity, Propagation, and Immunotherapy. EBioMedicine 6:42-49.
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor perspectives in medicine 1:a006189.
Shao CY, Mirra SS, Sait HB, Sacktor TC, Sigurdsson EM (2011) Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Abeta and tau pathology in transgenic mouse models of Alzheimer's disease. Acta neuropathologica 122:285-292.
Sierra-Filardi E, Puig-Kroger A, Blanco FJ, Nieto C, Bragado R, Palomero MI, Bernabeu C, Vega MA, Corbi AL (2011) Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 117:5092-5101.
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. The Journal of cell biology 156:1051-1063.
Sugimoto T, Kuroda H, Horii Y, Moritake H, Tanaka T, Hattori S (2001) Signal transduction pathways through TRK-A and TRK-B receptors in human neuroblastoma cells. Japanese journal of cancer research : Gann 92:152-160.
Tang Y, Le W (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular neurobiology 53:1181-1194.
Thakker-Varia S, Alder J, Crozier RA, Plummer MR, Black IB (2001) Rab3A is required for brain-derived neurotrophic factor-induced synaptic plasticity: transcriptional analysis at the population and single-cell levels. The Journal of neuroscience : the official journal of the Society for Neuroscience 21:6782-6790.
Thinakaran G, Teplow DB, Siman R, Greenberg B, Sisodia SS (1996) Metabolism of the "Swedish" amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the "beta-secretase" site occurs in the golgi apparatus. The Journal of biological chemistry 271:9390-9397.
Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664-666.
van Velthoven CT, Braccioli L, Willemen HL, Kavelaars A, Heijnen CJ (2014) Therapeutic potential of genetically modified mesenchymal stem cells after neonatal hypoxic-ischemic brain damage. Molecular therapy : the journal of the American Society of Gene Therapy 22:645-654.
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer's disease. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 7:399-412.
Vershinin M, Carter BC, Razafsky DS, King SJ, Gross SP (2007) Multiple-motor based transport and its regulation by Tau. Proceedings of the National Academy of Sciences of the United States of America 104:87-92.
Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE (2006) Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. Journal of leukocyte biology 79:596-610.
Wang R, Dineley KT, Sweatt JD, Zheng H (2004) Presenilin 1 familial Alzheimer's disease mutation leads to defective associative learning and impaired adult neurogenesis. Neuroscience 126:305-312.
West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nature reviews Neuroscience 3:921-931.
Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proceedings of the National Academy of Sciences of the United States of America 83:3500-3504.
Yamada M, Ohnishi H, Sano S, Nakatani A, Ikeuchi T, Hatanaka H (1997) Insulin receptor substrate (IRS)-1 and IRS-2 are tyrosine-phosphorylated and associated with phosphatidylinositol 3-kinase in response to brain-derived neurotrophic factor in cultured cerebral cortical neurons. The Journal of biological chemistry 272:30334-30339.
Yamamoto M, Sobue G, Yamamoto K, Terao S, Mitsuma T (1996) Expression of mRNAs for neurotrophic factors (NGF, BDNF, NT-3, and GDNF) and their receptors (p75NGFR, trkA, trkB, and trkC) in the adult human peripheral nervous system and nonneural tissues. Neurochemical research 21:929-938.
Yao H, Liu Y, Zhou B, Zhang Z, An N, Wang P, Wang L, Zhang X, Jiang T (2013) Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI. European journal of radiology 82:1531-1538.
Yarza R, Vela S, Solas M, Ramirez MJ (2015) c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Frontiers in pharmacology 6:321.
Yasutake C, Kuroda K, Yanagawa T, Okamura T, Yoneda H (2006) Serum BDNF, TNF-alpha and IL-1beta levels in dementia patients: comparison between Alzheimer's disease and vascular dementia. European archives of psychiatry and clinical neuroscience 256:402-406.
Yegambaram M, Manivannan B, Beach TG, Halden RU (2015) Role of environmental contaminants in the etiology of Alzheimer's disease: a review. Current Alzheimer research 12:116-146.
Yin YX, Sun ZP, Huang SH, Zhao L, Geng Z, Chen ZY (2010) RanBPM contributes to TrkB signaling and regulates brain-derived neurotrophic factor-induced neuronal morphogenesis and survival. Journal of neurochemistry 114:110-121.
Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H, Smith MA (2001) Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. Journal of neurochemistry 76:435-441.