簡易檢索 / 詳目顯示

研究生: 陳致維
Chen, Chih-Wei
論文名稱: 翠斑草蜥在晨曦時刻與鳥類掠食風險下之隱蔽效果與行為模式
Crypsis and active pattern of Takydromus viridipunctatus at the twilight moment under avian attack risks
指導教授: 林思民
Lin, Si-Min
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 40
中文關鍵詞: 行為決定草蜥屬鳥類掠食最佳逃脫理論殘餘生殖價值視覺模型隱蔽
英文關鍵詞: avian predation, behavioral decision, crypsis, optimal escape theory, residual reproductive value, Takydromus, visual modeling
DOI URL: http://doi.org/10.6345/NTNU202001247
論文種類: 學術論文
相關次數: 點閱:163下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最佳逃脫理論(optimal escape theory)指出獵物應該在逃離的損失和獲利中取得平衡,並依此調整逃脫的行為。依據過去相關研究所提出的模型,可計算生物與非生物因子對逃離行為損失和獲利的效應,進而得知這些因子如何影響獵物的逃離決定。本研究以翠斑草蜥(Takydromus viridipunctatus)為對象,探討隱蔽效果(crypsis)、掠食者活動、性別以及溫度如何影響草蜥的逃離行為。草蜥於夜間在草上睡眠並以自身的隱蔽躲避鳥類的掠食。但隨晨曦光環境的漸強,草蜥在草上的隱蔽效果可能下降。因此本研究記錄草蜥與其主要掠食者牛背鷺(Bubulcus ibis)在晨曦時的行為模式,同時記錄光環境的變化與測量草蜥的反射光譜,再以掠食者的視覺模型估算草蜥的隱蔽效果。結果顯示在日出的前後,隨著隱蔽效果的下降與掠食者活動的增強,草蜥離開草的表面並向下移動,以躲避逐漸升高的掠食者風險。另一方面,本研究也發現雌性草蜥在繁殖季比雄性草蜥更早離開草面,這可能是因為雌性草蜥有比雄性草蜥有更高的殘餘生殖價值(residual reproductive value),因此需要更警覺掠食者的風險。同時,隨著溫度越高,草蜥也越晚離開草面。由於草蜥是外溫動物,溫度可能促進生理狀態進而增進逃脫能力,並產生較晚離開草面的行為。隱蔽效應、掠食壓力、性別、溫度這四個因子對草蜥行為的影響與先前解釋最佳逃脫理論的模型預測一致,並支持草蜥最佳化其行為以躲避掠食。總而言之,本研究呈現了獵物如何根據不同因子評估其逃離的損失與獲利,並做出將掠食風險最小化的行為決定。

    Optimal escape theory has been studied for decades, which indicates that the prey should adjust its escape behavioral decision to balance the costs of fleeing or not fleeing. Several models have been proposed to explain how biotic and abiotic factors effect on the costs thus influence the escape behavior. Here, I introduce a well-studied species, the green-spotted grass lizard Takydromus viridipunctatus, and investigated how crypsis, predator activity, sex and temperature effect on the behavior of the lizard in twilight environment. This diurnal lizard perches on the surface of the grass at night, which is regarded as crypsis to prevent avian predation from the top. In order to investigate the escape strategy of the lizard under ambient light condition, I recorded the behavior patterns of the lizards and its major predator (the cattle egret, Bubulcus ibis) during twilight period. The reflectance of lizards, the changing of simultaneous ambient light, and visual modeling of the egret were calculated by using spectrum meter and power meter. We found that the lizards left the grass surface to avoid the increasing predation risk of egret since the decreasing of crypsis effectiveness and increasing of predator activity. The female lizards escaped earlier than the males in the breeding season, which could be explained by the higher residual reproductive value than males. The air temperature has a positive correlation with a delayed fleeing timing, which may reveal the temperature effect on the physiology thus influence the ability of escape. These results are consistent with the predictions of crypsis from the models, showing how prey accesses its costs of fleeing or not fleeing according to different circumstances.

    Introduction 1 Materials and Methods 6 1. Behavioral patterns 6 2. Ambient light measurement 7 3. Reflectance of lizards and background 8 4. Visual modelling 9 5. Statistics 11 Results 14 1. Behavioral pattern under ambient light 14 2. Reflectance and classic colorimetric variables of lizards and background 15 3. Visual modeling 15 Discussion 17 1. Lizard’s behaviors with the ambient light and predator activity 17 2. Behavioral decision in relation to crypsis and predator 17 3. Sex effect and temperature effect 19 Conclusion 21 References 22

    Blumstein, D. T., Samia, D. S., & Cooper Jr, W. E. (2016). Escape behavior: dynamic decisions and a growing consensus. Current opinion in behavioral sciences, 12, 24-29.
    Borges, R., Khan, I., Johnson, W. E., Gilbert, M. T. P., Zhang, G., Jarvis, E. D., ... & Antunes, A. (2015). Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC genomics, 16(1), 751.
    Bowmaker, J. K., & Knowles, A. (1977). The visual pigments and oil droplets of the chicken retina. Vision research, 17(7), 755-764.
    Broom, M., & Ruxton, G. D. (2005). You can run—or you can hide: optimal strategies for cryptic prey against pursuit predators. Behavioral Ecology, 16(3), 534-540.
    Carretero, M. A., Vasconcelos, R., Fonseca, M., Kaliontzopoulou, A., Brito, J. C., Harris, D. J., & Perera, A. (2006). Escape tactics of two syntopic forms of the Lacerta perspicillata complex with different colour patterns. Canadian Journal of Zoology, 84(11), 1594-1603.
    Cooper Jr, W. E. (2011). Influence of some potential predation risk factors and interaction between predation risk and cost of fleeing on escape by the lizard Sceloporus virgatus. Ethology, 117(7), 620-629.
    Cooper Jr, W. E., & Blumstein, D. T. (2014). Novel effects of monitoring predators on costs of fleeing and not fleeing explain flushing early in economic escape theory. Behavioral Ecology, 25(1), 44-52.
    Cooper Jr, W. E., & Frederick, W. G. (2007). Optimal flight initiation distance. Journal of theoretical biology, 244(1), 59-67.
    Cooper, W. E. (2010). Risk factors affecting escape behavior by the Jamaican lizard Anolis lineatopus (Polychrotidae, Squamata). Caribbean Journal of Science, 46(2–3), 216-227.
    Cooper, W. E., & Sherbrooke, W. C. (2010). Crypsis influences escape decisions in the round-tailed horned lizard (Phrynosoma modestum). Canadian journal of zoology, 88(10), 1003-1010.
    Cott, H. B. (1940). Adaptive coloration in animals, Methuen & Co. Ltd., London. 508 pp.
    Cuadrado, M., Martín, J., & López, P. (2001). Camouflage and escape decisions in the common chameleon Chamaeleo chamaeleon. Biological Journal of the Linnean Society, 72(4), 547-554.
    Edmunds, M. (1974). Defence in animals: a survey of anti-predator defences. Longman Publishing Group.
    Endler, J. A. (1978). A predator’s view of animal color patterns. In Evolutionary biology (pp. 319-364). Springer, Boston, MA.
    Endler, J. A. (1990). On the measurement and classification of colour in studies of animal colour patterns. Biological Journal of the Linnean Society, 41(4), 315-352.
    Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. The American Naturalist, 139, S125-S153.
    Endler, J. A. (1993). The color of light in forests and its implications. Ecological monographs, 63(1), 1-27.
    Endler, J. A., & MIELKE JR, P. W. (2005). Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86(4), 405-431.
    Hart, N. S. (2001). The visual ecology of avian photoreceptors. Progress in retinal and eye research, 20(5), 675-703.
    Heatwole, H. (1968). Relationship of escape behavior and camouflage in anoline lizards. Copeia, 109-113.
    Hill, G. E., Hill, G. E., McGraw, K. J., & Kevin, J. (Eds.). (2006). Bird coloration: mechanisms and measurements (Vol. 1). Harvard University Press.
    Ioannou, C. C., & Krause, J. (2009). Interactions between background matching and motion during visual detection can explain why cryptic animals keep still. Biology Letters, 5(2), 191-193.
    Jarvis, J. R., Abeyesinghe, S. M., McMahon, C. E., & Wathes, C. M. (2009). Measuring and modelling the spatial contrast sensitivity of the chicken (Gallus g. domesticus). Vision research, 49(11), 1448-1454.
    Johnsen, S. (2012). Absorption. In The Optics of Life (ed. S. Johnsen), pp. 104-115. Princeton, NJ: Princeton University Press.
    Kelber, A., & Lind, O. (2010). Limits of colour vision in dim light. Ophthalmic and Physiological Optics, 30(5), 454-459.
    Kelber, A., Yovanovich, C., & Olsson, P. (2017). Thresholds and noise limitations of colour vision in dim light. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1717), 20160065.
    Lima, S. L., & Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian journal of zoology, 68(4), 619-640.
    Lin, J. W., Chen, Y. R., Li, T. W., Shaner, P. J. L., & Lin, S. M. (2020). Long-term monitoring reveals invariant clutch size and unequal reproductive costs between sexes in a subtropical lacertid lizard. Zoological Letters, 6(1), 1-12.
    Lin, J. W., Chen, Y. R., Wang, Y. H., Hung, K. C., & Lin, S. M. (2017). Tail regeneration after autotomy revives survival: a case from a long-term monitored lizard population under avian predation. Proceedings of the Royal Society B: Biological Sciences, 284(1847), 20162538.
    Lind, O., & Kelber, A. (2009). Avian colour vision: Effects of variation in receptor sensitivity and noise data on model predictions as compared to behavioural results. Vision research, 49(15), 1939-1947.
    Lind, O., Chavez, J., & Kelber, A. (2014). The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions. Journal of Comparative Physiology A, 200(3), 197-207.
    Lisney, T. J., Rubene, D., Rózsa, J., Løvlie, H., Håstad, O., & Ödeen, A. (2011). Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus. Vision research, 51(12), 1324-1332.
    Lue, K. Y., & Lin, S. M. (2008). Two new cryptic species of Takydromus (Squamata: Lacertidae) from Taiwan. Herpetologica, 64(3), 379-395.
    Macedonia, J. M., Lappin, A. K., Loew, E. R., McGuire, J. A., Hamilton, P. S., Plasman, M., ... & Kemp, D. J. (2009). Conspicuousness of Dickerson's collared lizard (Crotaphytus dickersonae) through the eyes of conspecifics and predators. Biological Journal of the Linnean Society, 97(4), 749-765.
    Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., & Shawkey, M. D. (2013). pavo: an R package for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution, 4(10), 906-913.
    Marsh, R. L. & Bennett, A. F. (1986). Thermal dependence of sprint performance
    Norris, K. S., & Lowe, C. H. (1964). An analysis of background color‐matching in amphibians and reptiles. Ecology, 45(3), 565-580.
    of the lizard Sceloporus occidentalis. Journal of Experimental Biology 126, 79–87.
    Olsson, P., Lind, O., & Kelber, A. (2015). Bird colour vision: behavioural thresholds reveal receptor noise. Journal of Experimental Biology, 218(2), 184-193.
    Olsson, P., Lind, O., & Kelber, A. (2018). Chromatic and achromatic vision: parameter choice and limitations for reliable model predictions. Behavioral Ecology, 29(2), 273-282.
    Ruxton, G. D., Sherratt, T. N. & Speed, M. P. (2004). Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press, New York.
    Samia, D. S., Blumstein, D. T., Stankowich, T., & Cooper Jr, W. E. (2016). Fifty years of chasing lizards: new insights advance optimal escape theory. Biological Reviews, 91(2), 349-366.
    Stankowich, T., & Blumstein, D. T. (2005). Fear in animals: a meta-analysis and review of risk assessment. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2627-2634.
    Stevens, M., & Ruxton, G. D. (2019). The key role of behaviour in animal camouflage. Biological Reviews, 94(1), 116-134.
    Tseng, W. H., Lin, J. W., Lou, C. H., Lee, K. H., Wu, L. S., Wang, T. Y., ... & Lin, S. M. (2018). Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Scientific reports, 8(1), 1-10.
    Vorobyev, M., & Osorio, D. (1998). Receptor noise as a determinant of colour thresholds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1394), 351-358.
    Ydenberg, R. C., & Dill, L. M. (1986). The economics of fleeing from predators. Advances in the Study of Behavior, 16(C), 229-249.
    Zug, G. R., Vitt, L., & Caldwell, J. P. (2001). Herpetology: an introductory biology of amphibians and reptiles. Academic press.

    下載圖示
    QR CODE