研究生: |
楊閔媞 |
---|---|
論文名稱: |
微波介電材料 La(Mg1/2Ti1/2)O3 和 (A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta) 之光譜性質研究 Optical properities of La(Mg1/2Ti1/2)O3 and (A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta) |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 微波 、介電 、鑭鎂鈦氧 、二氧化鈦 、拉曼光譜 、紅外光光譜 |
英文關鍵詞: | microwave, dielectric, La(Mg1/2Ti1/2)O3, TiO2, Raman, IR, Infrared, optical |
論文種類: | 學術論文 |
相關次數: | 點閱:571 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究固態法和檸檬酸鹽法兩種不同方法製成的 La(Mg1/2Ti1/2)O3 以及不同原子取代的 (A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta) rutile系列的光譜性質,並探討紅外光光譜特徵與其微波特性的關聯。
首先,我們觀察到 (i) x 光繞射能譜顯示兩種不同製程方法的 La(Mg1/2Ti1/2)O3 塊材具有相同之晶格結構;(ii) 兩個樣品都有 12 個拉曼聲子振動模,但固態法樣品峰值的半高寬較窄,暗示其比檸檬酸鹽法樣品具有較好的晶格同調性;(iii) 兩個樣品皆有 10 個紅外光聲子振動模,並推算出離子晶格貢獻的介電常數與品質因子。固態法的介電常數較高,且固態法在 1 THz 的品質因子也較好。
接著,我們發現到 (i) 六個 rutile 系列樣品的 x 光繞射峰皆對應到 rutile 結構的峰值,且沒有雜相存在;(ii) 六個樣品的紅外振動模頻率位置有差異,應與氧八面體中陽離子與氧的鍵結強度有關;(iii) 在高頻及微波頻段量測介電常數和品質因子以 (Mg1/3Nb2/3)1/2Ti1/2O2 及 (Mg1/3Ta2/3)1/2Ti1/2O2 趨勢最為符合;(iv) (Zn1/3Ta2/3)1/2Ti1/2O2 品質因子最高,但介電常數最小,(Zn1/3Nb2/3)1/2Ti1/2O2 介電常數最高,但品質因子最差。
最後,(Mg1/3Nb2/3)1/2Ti1/2O2 及 (Mg1/3Ta2/3)1/2Ti1/2O2 樣品隨著溫度的下降,我們發現聲子軟化的現象,此結果符合賴登-沙哈-泰勒關係式。
We report the optical properties of La(Mg1/2Ti1/2)O3 prepared by either solid state or citric-acid method and (A2+1/3B5+2/3)1/2Ti1/2O2 (A2+ = Mg, Ni, and Zn, B5+ = Nb and Ta). Our goal is to understand the correlation between their Raman-scattering and infrared characteristics and microwave properties.
The x-ray powder diffraction spectra show La(Mg1/2Ti1/2)O3 ceramics prepared by two different methods possess the same crystal structure. Twelve Raman-active phonon modes are observed in both samples, displaying similar frequency positions. The linewidth of La(Mg1/2Ti1/2)O3 prepared by solid state method is narrower than that of citric-acid one, implying that its coherency in lattice vibration modes is better. In addition, ten infrared-active phonon modes contribute the dielectric constant. La(Mg1/2Ti1/2)O3 grown by solid state method exhibit higher dielectric constant and better Q × f factor than those of citric-acid one.
The x-ray powder diffraction spectra also show six rutile samples are well crystallized. The variation of frequency positions of infrared-active phonon modes in six samples is mainly due to different bond strength between cation and oxygen in the octahedron. The trend of dielectric properties of (Mg1/3Nb2/3)1/2Ti1/2O2 and (Mg1/3Ta2/3)1/2Ti1/2O2 in microwave and high-frequency regime is very similar. (Zn1/3Ta2/3)1/2Ti1/2O2 has the highest Q × f factor, but the lowest dielectric constant. In contrast, (Zn1/3Nb2/3)1/2Ti1/2O2 has the highest dielectric constant, but the lowest Q × f factor.
With decreasing temperature, (Mg1/3Nb2/3)1/2Ti1/2O2 and (Mg1/3Ta2/3)1/2Ti1/2O2 demonstrate the effect of phonon softening, consistent with the prediction of Lyddane-Sachs-Teller relation.
[1] H. Ohsato, T. Tsunooka, A. Kan, Y. Ohishi, Y. Miyauchi, and Y. Tohdo “Microwave-millimeterwave dielectric materials”, Key Eng. Mater. 269, 195 (2004).
[2] 電子材料專輯,電子月刊第十一卷第四期四月刊 (2005)。
[3] 翁敏航、楊茹媛、李義傑,高介電材料之微波特性量測(一),奈米通訊第十一卷第一期二月刊 (2004)。
[4] W. Wersing, “Microwave ceramics for resonators and filters”, Current Opinion in Solid State and Materials Science 1, 715 (1996).
[5] G. Burns, Solid State Physics, Academic Press. (1985).
[6] M. D. Kingery and H. K. Barsoum, Fundamental of Ceramics, The McGraw-Hill Companies Inc. 526 (1997).
[7] I. M. Reaney and D. Iddles “Microwave dielectric ceramics for resonators and filters in mobile phone networks”, J. Am. Ceram. Soc. 89[7], 2063 - 2072 (2006).
[8] S. Y. Cho, C. H. Kim, D. W. Kim, K. S. Hong, and J. H. Kim, “Dielectric properties of Ln(Mg1/2Ti1/2)O3 as substrates for high-Tc superconductor thin films”, J. Mater. Res. 14(6), 2484 - 2487 (1999).
[9] S. Y. Cho, M. K. Seo, K. S. Hong, S. J. Park, and I. T. Kim, “Influence of ZnO evaporation on the microwave dielectric properties of La(Zn1/2Ti1/2)O3”, Mater. Res. Bull. 32(6), 725 - 735 (1997).
[10] S. Y. Cho, K. H. Ko, K. S. Hong, and S. J. Park, “Cation ordering and microwave dielectric properties of complex perovskite compounds La(Mg1/2Ti1/2)O3 and La(Mg1/2Zr1/2)O3”, J. Korean Ceram. Soc. 34(3), 330 - 336 (1997).
[11] D. Y. Lee, S. J. Yoon, J. H. Yeo, S. Nahm, J. H. Paik, K. C. Whang, and B. G. Ahn, “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ceramics”, J. Mater. Sci. Lett. 19, 131 - 134 (2000).
[12] S. Y. Cho, H. J. Youn, H. J. Lee, and K. S. Hong, “Contribution of structure to temperature dependence of resonant frequency in the (1-x)La(Zn1/2Ti1/2)O3 – xATiO3 (A = Ca, Sr) system”, J. Am. Ceram. Soc. 84(4), 753 - 758 (2001).
[13] S. Y. Cho, I. T. Kim, and K. S. Hong, “Crystal structure and microwave dielectric properties of (1-x)La(Zn1/2Ti1/2)O3 – xATiO3 System”, Jpn. J. Appl. Phys. 37(2), 593 - 596 (1998).
[14] S. Kucheiko, H. J. Kim, D. H. Yeo, and H. J. Jung, “Microwave dielectric properties of LaZn0.5Ti0.5O3 ceramics prepared by sol-gel process”, Jpn. J. Appl. Phys. 35(2A), 668 - 672 (1996).
[15] M. P. Seabra and V. M. Ferreira, “Synthesis of La(Mg0.5Ti0.5)O3 ceramics for microwave applications”, Mat. Res. Bull. 37, 255 - 262 (2002).
[16] M. P. Seabra, M. Avdeev, V. M. Ferreira, R. C. Pullar, and N. McN. Alford, “Structure and microwave dielectric properties of La(Mg0.5Ti0.5)O3 – CaTiO3 system” J. Eur. Ceram. Soc. 23, 2403 (2003).
[17] J. Andrade, M. E. Villafuerte-Castrejon, R. Valenzuela, and A. R. West, “Rutile solid solutions containing M+ (Li), M2+ (Zn, Mg), M3+ (Al) and M5+ (Nb, Ta, Sb) ions”, J. Mater. Sci. Lett. 5, 147 - 149 (1986).
[18] 林美如,多鐵電氧化物及硫化物材料之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,96 年 6 月。
[19] 翁士民,高溫超導銅氧化物 Y1-xCaxBa2Cu3Oy 和 Y1-xPrxBa2Cu4O8 之光譜研究,國立臺灣師範大學物理研究所碩士論文,93 年 6 月。
[20] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971 第四版上冊。
[21] 毛光興,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[22] 李冠卿,近代光學,聯經出版社,中華民國七十七年九月初版。
[23] 何金龍,錳氧化物、含鋰的鈦氧化物及磁熱材料的光譜與結構性質研究,國立臺灣師範大學物理研究所博士論文,94 年 10 月。
[24] I. Levin, T.A. Vanderah, T.G. Amos, and J.E. Maslar, “Structural behavior and Raman spectra of perovskite-like solid solutions (1-x)(LaMg0.5Ti0.5O3) − x(La2/3TiO3)”, Chemistry of Materials, 17, 3273 - 3280 (2005).
[25] I. Abrahams, P.G. Bruce, W.I.F. David, and A.R. West, “Structure determination of substituted rutiles by time-of-flight neutron diffraction”, Chemistry of Materials, 1, 237 - 240 (1989).
[26] Eung Soo Kim and Dong Ho Kang, “Microwave dielectric properties of (A2+1/3B5+2/3)0.5Ti0.5O2 (A2+ = Zn, Mg, B5+ = Nb, Ta) ceramics”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55, 1069 (2008).
[27] Eung Soo Kim, Dong Ho Kang, and Sung Joo Kim, “Effect of crystal structure on microwave dielectric properties of (Ni1/3B2/3)1-xTixO2 (B = Nb and Ta)”, Jpn. J. Appl. Phys 46, 7101–7104 (2007).
[28] M. N. Iliev, M. V. Abrashev, A. P. Litvinchuk, V. G. Hadjiev, H. Guo, and A. Gupta, “Raman spectroscopy of ordered double perovskite La2CoMnO6 thin films”, Phys. Rev. B 75, 104118 (2007).
[29] Dibyaranjan Rout, V. Subramanian, K. Hariharan, and V. R. K. Murthy, “Raman spectroscopic study of (Pb1−xBax)(Yb1/2Ta1/2)O3 ceramics”, J. Appl. Phy. 98, 103503 (2005).
[30] G. Santosh Babu, V. Subramanian, and V. R. K. Murthy, “Far-infrared, Raman spectroscopy, and microwave dielectric properties of La(Mg0.5Ti(0.5−x)Snx)O3 ceramics”, J. Appl. Phys. 102, 064906 (2007).
[31] H. Zheng, I. M. Reaney, G. D. C. Csete de Györgyfalva, R. Ubic, J.Yarwood, M. P. Seabra, and V. M. Ferreira, “Raman spectroscopy of CaTiO3-based perovskite solid solutions”, J. Mater. Res. 19, 488 (2004).
[32] I-Nan Lin, Hung-Chung Hsueh, Wei-Chung Lee, Min-Ti Yang, Chia-Ta Chia, Hsiang-Ling Liu, Hsiu-Fung Cheng, and Yi-Chun Chen, “Far infrared and Raman spectroscopy for examination of the microwave dielectric properties of La(Mg0.5Ti0.5)O3 ceramics”, unpublished.
[33] M. Chen, D. B. Tanner, and J. C. Nino, “ Infrared study of the phonon modes in bismuth pyrochlores, Phys. Rev. B 72, 054303 (2005).
[34] W. G. Spitzer, R. C. Miller”, D. A. Kleinman, and L. E. Howarth, “Far infrared dielectric dispersion in BaTiO3, SrTiO3, and TiO2”, Phys. Rev. 126, 1710 (1962).
[35] J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, “Lattice dynamics of rutile”, Phys. Rev. B 3, 3475 (1971).
[36] C. Lee, P. Ghosez, and X. Gonze, “Lattice dynamics and dielectric properties of incipient ferroelectric TiO2 rutile” , Phys. Rev. B 18, 13379 (1994).
[37] B. Montanari and N.M. Harrison, “Lattice dynamics of TiO2 rutile: influence of gradient corrections in density functional calculations”, Chemical Physics Letters 364, 528 - 534 (2002).
[38] Eung Soo Kim and Dong Ho Kang, “Microwave dielectric properties of (A2+1/3B5+2/3)0.5Ti0.5O2 (A2+ = Zn, Mg, B5+ = Nb, Ta) ceramics”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55, 1069 (2008).
[39] Eung Soo Kim, Dong Ho Kang, and Sung Joo Kim, “Effect of crystal structure on microwave dielectric properties of (Ni1/3B2/3)1-xTixO2 (B = Nb and Ta) ”, Jpn. J. Appl. Phys 46, 7101–7104 (2007).
[40] K. C. Liang, H. L. Liu, H. D. Yang, W. N. Mei, and D. C. Ling, “Structural and optical studies of high dielectric constant (Na0.5A0.5)Cu3Ti4O12 (A = La and Bi)”, J. Phys.: Condens. Matter 20, 275238 (2008).
[41] G. A. Samara and P. S. Peercy, “Pressure and temperature dependence of the static dielectric constants and raman spectra of TiO2 (Rutile)”, Phys. Rev. B 7, 1131 (1973).
[42] Francois Gervais and Bernard Piriou, “Temperature dependence of transverse- and longitudinal-optic modes in TiO2 (rutile)”, Phys. Rev. B 10, 1642 (1974).
[43] 余承遠,xLa(Mg1/2Sn1/2)O3-(1-x)La(Mg1/2Ti1/2)O3 微波陶瓷材料之拉曼光譜與延伸 x 光吸收精細結構分析,國立臺灣師範大學物理研究所碩士論文,96 年 7 月。