簡易檢索 / 詳目顯示

研究生: 莊裕仁
Chuang Yu-Ren
論文名稱: 凝固速率對A390鋁合金矽形態與硬度影響之研究
Reasearch on tne Solidification Rate Effects Silicon Morphology and Hardness of A390 aluminum alloy
指導教授: 邱弘興
Chiou, Horng-Shing
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 102
中文關鍵詞: A390鋁合金凝固速率田口方法矽形態
英文關鍵詞: A390 Aluminum Alloy, Solidification Rate, Taguchi Method, Silicon Morphology
論文種類: 學術論文
相關次數: 點閱:451下載:54
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討凝固速率對A390鋁合金矽形態與硬度之影響。採用田口方法進行實驗配置,以求得製程參數對機械性質之最佳條件與貢獻率。並針對冷卻速率、矽形態、第二樹枝狀支臂間距與孔洞率、機械性質之關係作一探討。其中所考慮之控制因素包括:磷調質量、澆鑄溫度、金屬模具溫度、除氣時間等四項。
    實驗結果顯示,澆鑄溫度與金屬模具溫度為影響硬度值之重要製程條件,而磷添加量與澆鑄溫度為影響抗拉強度值之重要製程條件。欲製造高品質A390鋁合金之最佳化製程為:磷調質量0.015wt%、澆鑄溫度720℃、金屬模具溫度-50℃、除氣時間10分鐘。冷卻速率對第二樹枝狀支臂間距、初晶矽之尺寸、孔洞率呈現一反比之關係。影響第二樹枝狀支臂間距最大因素為澆鑄溫度。熱處理會增大初晶矽之尺寸與改變初晶矽形態從塊狀至樹枝狀、星狀或混合形態,亦能提昇共晶矽之調質級數。熱處理前、後初晶矽尺寸與抗拉強度、勃式硬度呈現一反比之關係。影響熱處理前、後初晶矽尺寸最大者為澆鑄溫度與模具溫度所形成之溫度差,亦即凝固速率。
    關鍵字:A390鋁合金、田口方法、凝固速率、矽形態

    The purpose of this research was to discuss the solidification rate effects silicon morphology and hardness of A390 aluminum alloy. By using Taguchi Methods to get the optimum processing parameters, the ratio of contribution, and predict polynomial of the process. And discuss the relationships between the cooling rate, silicon morphology, Secondary Dendrite Arm Spacing, porosity and mechanical properties. The processing parameters in this research including refinement quantity of phosphorous, pouring temperature, metal mold temperature and degassing time.
    The results show the most important processing parameters effect Brinell hardness are pouring temperature and metal mold temperature. The most important processing parameters effect tensile strength are the quantity of phosphorous and pouring temperature. The optimum processing parameters of manufacturing high quality A390 aluminum alloy are: refinement quantity of phosphorous is 0.015wt%, pouring temperature is 720℃, metal mold temperature is -50℃ and degassing time is 10 minutes. The relationships between cooling rate and Secondary Dendrite Arm Spacing, primary silicon size, porosity shows reverse. The most important factor that effects the Secondary Dendrite Arm Spacing is pouring temperature. The heat treatment could increase primary silicon size, change silicon morphology from blocky to dendritic or star-shaped or compounded of these three crystallographic, and increase the modification rating of eutectic silicon. The results show the primary silicon size increase with tensile strength and Brinell hardness decrease, and the most important factor that effects the primary silicon size is the solidification rate caused by pouting temperature and metal mold temperature with or without heat treatment.
    Keyword:A390 aluminum alloy, Taguchi methods, solidification rate, silicon morphology.

    總 目 錄 中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 總目錄…………………………………………………………………i 表目錄…………………………………………………………………iv 圖目錄…………………………………………………………………vi 第一章 前言……………………………………………………………1 1-1研究動機…………………………………………………………1 1-2研究目的…………………………………………………………1 第二章 文獻探討………………………………………………………3 2-1快速凝固製程……………………………………………………3 2-2鑄造用鋁合金……………………………………………………4 2-3鋁液中孔洞之生成原因…………………………………………5 2-4鋁合金熔液之除氣處理…………………………………………6 2-5A390鋁合金顯微組織之細化與調質處理………………………7 2-6鋁合金之強化處理………………………………………………9 2-7樹枝晶間距對鋁合金機械性質的影響…………………………12 2-8矽形態……………………………………………………………12 2-9共晶矽形態的影響………………………………………………13 2-10實驗設計方法-田口方法…………………………………….14 2-10-1田口方法中品質之定義………………………………….14 2-10-2參數設計之工具………………………………………….15 2-10-3品質特性………………………………………………….18 2-10-4數據的解析與確認實驗………………………………….19 第三章 實驗方法與步驟………………………………………………20 3-1實驗材料與模型…………………………………………………20 3-2實驗設計…………………………………………………………20 3-3熔煉與細化處理…………………………………………………21 3-4冷卻曲線量測……………………………………………………21 3-5熱處理……………………………………………………………21 3-6孔洞率量測………………………………………………………22 3-7顯微組織觀察……………………………………………………22 3-8第二樹枝狀支臂間距之測量……………………………………22 3-9初晶矽尺寸之量測………………………………………………23 3-10機械性質試驗………………………………………………….23 第四章 實驗結果與討論………………………………………………24 4-1製程參數對硬度的影響…………………………………………24 4-1-1參數設計……………………………………………………24 4-1-2允差設計……………………………………………………25 4-1-3確認實驗……………………………………………………25 4-2製程參數對抗拉強度的影響……………………………………26 4-2-1參數設計……………………………………………………26 4-2-2允差設計……………………………………………………26 4-2-3確認實驗……………………………………………………27 4-3冷卻曲線量測之結果……………………………………………28 4-4金相結果觀察……………………………………………………28 4-4-1 0.005%磷添加量爐次之金相觀察………………………29 4-4-2 0.01%磷添加量爐之金相觀察………………………….29 4-4-3 0.015%磷添加量爐之金相觀察…………………………30 4-5熱處理之影響……………………………………………………31 4-5-1熱處理對初晶矽之影響……………………………………31 4-5-2熱處理對共晶矽之影響……………………………………32 4-6初晶矽與機械性質之關係………………………………………33 4-6-1初晶矽尺寸與勃式硬度值之關係…………………………34 4-6-2平均初晶矽尺寸與抗拉強度值之關係……………………34 4-7凝固冷卻速率之影響……………………………………………35 4-7-1冷卻速率對第二樹枝狀支臂間距之關係…………………36 4-7-2冷卻速率對初晶矽(無熱處理)大小之關係………………36 4-7-3冷卻速率對矽形態(無熱處理)之影響…………………36 4-8冷卻速率與孔洞率之關係………………………………………37 第五章 結論……………………………………………………………38 參考文獻……………………………………………………………….40 附錄一…………………………………………………………………100 附錄二…………………………………………………………………101

    1. C. H. Caceres and Q. G. Wang, 〝Solidification Conditions, Heat Treatment and Tensile Ductility of Al-7Si-0.4Mg Casting Alloys〞, AFS Trans., vol. 104, 1996, pp.1039-1043.
    2. 呂高榮, 〝A390鋁合金之矽形態控制及其與機械性質之關係〞, 國立台灣師範大學工業教育研究所, 民國85年.
    3. Gary W. Boone, Rodney F. Carver and Robert G. Seese,〝Optimizing Grain Refiners and Modifiers in Al-Si Alloys〞, Modern Casting, 1998, pp.52-54.
    4. H. Jones, 〝Rapid Solidification of Metals and Alloys〞, The Institution of Metallurgist, London, 1982.
    5. Kojior F. Kobayashi, Nobuo Tachibana and Paul II. Shingu, J. Mater. Sci., 25, 1990, pp.3149.
    6. John E Hatch, 〝Aluminum: Properties and Physical Metallurgy〞, American Society for Metals, Metals Park, Ohio, 1984.
    7. Soon-Gun Kim and Sung H. Whang, J. Mater. Sci., 26, 1991, pp.5911.
    8. J. Duszczyk and P. Jongenburger, J. Powder Metallurgy, No.1, 29, 1986, pp.20.
    9. 陳盈傑, 〝添加Nb成份對急冷Al-Cr-Zr合金熱穩定性的影響〞,國立交通大學材料科學與工程研究所, 民國84年.
    10. 余聲均, 〝微量元素添加對A356鋁合金機械性質影響之研究〞, 國立中央大學機械工程研究所碩士論文, 民國85年.
    11. J. L. Jorstad, 〝The Hypereutectic Aluminum-Silicon Alloys 390 and A390〞, Trans. of the Metallurgical Society of AIME, vol. 242, 1968, pp.1217-1221.
    12. R. F. Smart and J. A. Reynolds, 〝Aluminum in Automotive Piston Materials〞, Metals and Materials, vol. 6, 1972, pp.211-216.
    13. J. L. Jorstad, 〝The Hypereutectic Aluminum-Silicon Alloy Used to Cast the Vega Engine Block〞, Modern Casting, vol. 51, 1971, pp.59-64.
    14. J. L. Jorstad, 〝Applications of 390 Alloy:An Update〞, AFS Trans., vol. 92, 1984, pp.573-578.
    15. Donna L. Zalensas, 〝Aluminum Casting Technology〞, AFS, 1993.
    16. J. L. Jorstad, 〝Trends in Aluminum Castings Part 1:Automotive Applications〞, Modern Casting, 1984, pp.26-29.
    17. P. Mandal and A. Saha, 〝Size of Primary Silicon Particles of As-Cast High-Silicon Al Alloys〞, AFS Trans., vol. 99, 1991, pp.643-651.
    18. John E. Gruzleski, 〝Combating Al-Si Porosity〞, Modern Casting, 1995, pp.46-47.
    19. 胡瑞峰,〝製程參數對A356鋁合金孔洞率之探討〞, 國立臺灣大學機械工程研究所碩士論文, 民國80年.
    20. Elwin L. Rooy 〝Mechanisms of Porosity Formation in Aluminum〞, Modern Casting, 1992, pp.34-36.
    21. H. Orbon 原著, 王大倫譯, 〝熔解鋁金屬時之除氣與精煉方法〞, 鑄工季刊第67期, 民國79年, pp.53-56.
    22. 郭永聖, 〝鋁合金中氫氣實務工作之探討〞, 鑄工季刊第50期, 民國75年, pp.8-14.
    23. 鄭勝雄, 〝A356鋁合金之製程與機械性質之研究〞, 國立臺灣大學機械工程研究所碩士論文, 民國77年.
    24. 林玄良, 〝田口方法於A390鋁合金最佳化製程之應用〞, 國立臺灣師範大學工業教育研究所碩士論文, 民國86年.
    25. Fred O. Traenkner, 〝Practical Techniques for Casting Aluminum〞, Modern Casting, 1981, 44-4
    26. Michael J. Lessiter, 〝Understanding Inclusions in Aluminum Castings〞, Modern Casting, 1993, pp.29-31.
    27. Paul N. Crepeau, 〝Molten Aluminum Contamination:Gas, Inclusions and Dross〞, Modern Casting, 1997, pp.39-41.
    28. Nouruzi Khorsani, 〝Strontium and Boron Loss:A Peril of Aluminum Degassing 〞, Modern Casting, 1996, pp.36-38.
    29. David P. Kanicki and Wayne M. Rasmussen, 〝Processing Molten Aluminum-Part 1:Understanding Silicon Modification〞, Modern Casting, 1990, pp.24-27.
    30. E. N. Pan, M. W. Hsieh, S. S. Jang, C. R. Loper, Jr., 〝Study of the Influence of Processing Parameters on the Microstructure and Properties of A356 Aluminum Alloy〞, AFS Trans., vol. 97, 1989, pp.397-414.
    31. F. Paray and J. E. Gruzleski, 〝Effect of Modification on Aluminum Matrix of Al-Si-Mg Alloys〞, Materials Science and Technology , September, 1994, pp. 757-761.
    32. R. Das Gupta, C. G. Brown and S. Marek, 〝Analysis of Overmodified 356 Aluminum Alloy〞, AFS Trans., 1988, pp.297-310.
    33. S. Shivkumar, S. Ricci, Jr. B. Steenhoff and D. Apelian, 〝An Experimental Study on Optimize the Heat Treatment of A356 Alloy〞, AFS Trans., 1989, pp. 791-810.
    34. B. Closset, K. Pirie and J. E. Gruszleski, 〝Comparison of Thermal Analysis and Electrical Resistivity in Microstructure Evaluation of Al-Si Foundry Alloys〞, AFS Trans., 1984, pp.123-133.
    35. J. E. Gruzleski and B. M. Closset, 〝The Treatment of Liquid Aluminum-Silicon Alloys〞, AFS, 1990.
    36. J. Sulzet, 〝How to Grain Refine High silicon Aluminum Alloys〞, Modern Casting, 39, 1961, pp.38-43.
    37. P. Bates and D. S. Calvert, 〝Refinement and Foundry Characteristics of Hypereutectic Aluminum-Silicon Alloys〞, The British Foundryman, 59, 1966, pp.119-133.
    38. M. Adachi, 〝Modification of Hypereutectic Al-Si System Casting Alloys〞, J. of Japan Institute of Light Metals, 34, 1984, pp.430-436.
    39. M. Tagami and S. Yo, 〝Influence of Casting Temperature of Refinement of Primary Silicon Crystals in a Hypereutectic Al-20%Si Alloy by Phosphorus Addition〞, J. of Japan Institute of Light Metals, 26, 1976, pp.273-279.
    40. F. L. Amold and J. S. Prestley, 〝Hypereutectic Aluminum-Silicon Casting Alloys Phosphorus Refinement〞, AFS, 69, 1961, pp.61-69.
    41. P. B. Crossley and l. F. Mondolfo, 〝The Modification of Al-Si Alloys〞, Modern Casting, Vol. 49, 1966, pp.53-64.
    42. E. V. Dewhirst, 〝Gravity Die-Casting of Aluminum Silicon Alloy Pistons〞, The British Foundryman, vol. 59, 1966,pp.1-11.
    43. J. C. Weiss and C. R. Loper Jr., 〝Primary Silicon in Hypereutectic Aluminum-Silicon Casting Alloys〞, AFS Trans., vol. 95, 1987, pp.51-62.
    44. W. Schneider, 〝A New Method for the Refinement of Primary Si of Hypereutectic Al-Si Alloys in Direct Chill and Ingot Casting〞, Light Metals, 1993, pp.815-820.
    45. P. H. Shingu and I. F. Takamura, 〝Grain Refinement of Primary Crystals in Hypereutectic Al-Si and Al-Ge Alloys〞, Met. Trans., vol. 1, 1970, pp.2239-2240.
    46. C. Mascre, 〝Modification of High-Silicon Aluminum Alloys and the Correspondings Structure〞, Foundry Trade Journal, 94, 1953, pp.725-730.
    47. G. K. Sigworth, 〝Theoretical and Practical Aspects of the Modification of Al-Si Alloys〞, AFS, 91, 1983, pp.7-16.
    48. R. C. Harris, S. Lipson and H. Rosenthal, 〝Tensile Properties of Aluminum Silicon Magesium Alloys and the Effect of Sodium-Modification〞, AFS, 64, 1956, pp.470-481.
    49. N. Tenkedjiev, D. Argo and J. E. Gruzleski, 〝Sodium, Strontium and Phosphorus Effects in Hypereutectic Al-Si Alloys〞, AFS, 97, 1989, pp.127-136.
    50. M. D. Hanna, S. Z. Lu and A. Hellawell, 〝Modification in the Aluminum Silicon System〞, Metallurgical Trans., vol. 15A, 1984, pp.459-469.
    51. H. A. H. Steen and A. Hellawell, 〝Structure and Properties of Aluminum-Silicon Eutectic Alloys〞, Acta Met., vol. 20, 1972, pp.363-370.
    52. P. Nolting, 〝Control of the Eutectic Al-Si Microstructure by Means of Sodium, Phosphorus and Cooling Rate〞, Giesserei, vol.58, No. 17, 1971, pp.509-512.
    53. S. Bercovici, 〝Investigation of the Eutectic Microstructure and Properties of Al-Si Alloys〞, Giesserei, Vol. 67, No. 17, 1980, pp.522-532.
    54. J. B. Andrews and M. V. C. Seneviratne, 〝A New, Highly Wear-Resistant Aluminum –Silicon Casting Alloy for Automotive Engine Block Applications〞, AFS Trans., Vol.92, 1984, pp.209-216.
    55. 李勝隆, 〝鋁合金熱處理技術〞, 鑄造鋁合金工業技術講習會講義, 國立中央大學機械研究所, 民國85年.
    56. 〝鋁合金材料選用及熱處理技術〞, 經濟部工業局八十七年度工業技術人才培訓計劃講義, 金屬工業研發中心, 民國86年.
    57. 譚安宏、李勝隆、鄭榮瑞及林於隆, 〝Al-Si-Mg鑄造合金之熱處理〞, 鑄工季刊第86期, 民國84年, pp.68-74.
    58. 顏進豐,〝凝固熱參數與A356鋁合金品質之相關性研究〞, 國立臺灣大學機械工程研究所碩士論文, 民國87年.
    59. Q. S. Hamed and R. Elliott, 〝The Dependence of Secondary Dendrite Arm Spacing on Solidification Conditions-I. Untreated Al-7Si-0.5Mg Alloys〞, Cast Metals, vol. 6, No. 1,1993, pp.36-41.
    60. M. C. Flemings, T. Z. Kattamis and B. P. Bardes, 〝Dendrite Arm Spacing in Aluminum Alloys〞, AFS Trans., vol. 99, 1991, pp.501-506.
    61. Vorren, J. E. Evensen, T. B. Pedersen, 〝Microstructure and Mechanical Properties of Al-Si(Mg) Casting Alloys〞, AFS Trans., vol. 92, 1984, pp.459-466.
    62. S. Shivkumar, L. Wang, D. Apelian, 〝Effect of Polymer Degradation on the Quality of Lost Foam Casting〞, AFS Trans., vol. 98, 1990, pp.923-933.
    63. M. C. Flemings, 〝Solidification Processing〞, McGraw-Hill, New York, 1974.
    64. C. Lewis, 〝The Use of Thermal Analysis to Determine Grain Size in A356 and Its Relationship to Dendritic Cell Size and Mechanical Properties〞, Internation Molten Aluminum Processing Proceeding of the AFS/CMI Conference, Feb. 17-18, 1986, pp.149-164.
    65. F. Paray and J. E. Gruzleski, 〝Microstructure-Mechanical Property Relationships in A356 Alloy. Part I:Microstructure〞, Cast Metals, vol. 7, No. 1, 1994, pp.29-40.
    66. F. Paray and J. E. Gruzleski, 〝Microstructure-Mechanical Property Relationships in A356 Alloy. Part II:Mechanical Properties〞, Cast Metals, vol. 7, No. 3, 1994, pp.153-163.
    67. M. M. Tuttle and D. L. McLellan, 〝Silicon Particles Characteristics in Al-Si-Mg Castings〞, AFS Trans., vol. 90, 1982, pp.13-22.
    68. 〝田口式品質工程手冊〞, 中國生產力中心, 民國82年.
    69. 〝靜態參數設計〞, 經濟部工業局八十七年度工業技術人才培訓計畫講義, 中國生產力中心, 民國86年.
    70. 〝動態參數設計〞, 經濟部工業局八十七年度工業技術人才培訓計畫講義, 中國生產力中心, 民國86年.
    71. 〝允差設計〞, 經濟部工業局八十七年度工業技術人才培訓計畫講義, 中國生產力中心, 民國86年.
    72. 〝開發設計階段的品質工程〞, 田口品質工程講座 1, 中國生產力中心, 民國79年.
    73. 〝品質評價的SN比〞, 品質工程講座 3, 中國生產力中心, 民國80年.
    74. 林朝蒼, 〝提昇熱處理技術品質-田口品質工程之應用〞, 金屬熱處理第56期, 民國87年, pp.40-48.
    75. Metals Handbook, 〝Alloys Phase diagrams〞, ASM, vol. 3, 1987, pp.2-174.
    76. 謝志浩, 〝A356鋁合金消失模鑄件之顯微組織分析〞, 國立臺灣大學機械工程研究所碩士論文, 民國87年.
    77. 陳永福, 〝鑄造灌模及凝固數值模擬系統之改良與其實驗驗證〞, 國立成功大學材料所博士論文, 民國86年.
    78. 許益得, 〝SiC<p>/A390鋁基複合材料鑄件機械性質及腐蝕磨耗行為之研究〞, 國立臺灣師範大學工業教育研究所碩士論文, 民國八十八年.

    QR CODE