簡易檢索 / 詳目顯示

研究生: 蔡長順
Tsai, Chang-Shun
論文名稱: 硫磺素T的衍生物作為替代螢光探針用於偵測人類胰島類澱粉蛋白的聚集
Thioflavin T derivatives as alternative fluorescent probes to detect human islet amyloid polypeptide aggregation
指導教授: 杜玲嫻
Tu, Ling-Hsien
口試委員: 杜玲嫻
Tu, Ling-Hsien
李以仁
Lee, I-Ren
劉維民
Liu, Wei-Min
口試日期: 2022/07/07
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 54
中文關鍵詞: 胰島類澱粉蛋白第二型糖尿病類澱粉蛋白纖維硫磺素T衍生物近紅外光螢光探針
英文關鍵詞: islet amyloid polypeptide, type 2 diabetes, amyloid fibrils, thioflavin T derivatives, near-infrared fluorescence probe
DOI URL: http://doi.org/10.6345/NTNU202201112
論文種類: 學術論文
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多胜肽或蛋白質的不可逆錯誤折疊被指出與一些疾病有高度相關。例如,人類胰島類澱粉蛋白 (human islet amyloid polypeptide, hIAPP) 是一個由37個胺基酸所組成的賀爾蒙胜肽,容易發生聚集形成高度具有規則性結構的聚集體,稱為類澱粉蛋白纖維,並沉積於胰島β細胞的外部,造成β細胞的凋亡,此聚集體在大多數第二型糖尿病的病患中被找到。硫磺素T (Thioflavion T, ThT) 是一種普遍用於檢測類澱粉蛋白纖維生成的螢光探針。然而,ThT的放光波段與生物組織中自發螢光物質訊號重疊。合成的小分子或是奈米材料使用在一般抑制效果的測試實驗時,也有可能因本身的吸光範圍而影響到ThT的偵測結果,造成實驗結果的誤判。這激勵了我們想以ThT為結構骨架並進一步合成出另一系列的螢光探針,透過不同官能基的修飾使得放光波長能夠靠近近紅外光的範圍,以克服以上所述的難題。AmySP-4-Nap-Ene為該系列其中一個可放光在近紅外光區的螢光探針,它可辨識hIAPP形成的類澱粉蛋白纖維而大幅增長螢光強度,對於hIAPP纖維的結合親和力還更優於ThT。爾後,我們還利用全內反射式螢光顯微鏡觀察到螢光探針與hIAPP纖維結合時的放光。將其與大鼠胰島瘤細胞共培育48小時後也沒有發現明顯的細胞毒性。初步研究結果顯示,此探針具有檢測類澱粉蛋白纖維存在的潛力。

    Many irreversible misfolding of peptides or proteins may be related to some severe diseases. Human islet amyloid polypeptide (hIAPP), a 37-amino acid residue peptide hormone, is prone to aggregate and form highly ordered amyloid fibrils. The deposit of hIAPP amyloid fibrils found outside the pancreatic β-cells of patients with type 2 diabetes is considered to be closely related to β-cell apoptosis. Thioflavin T (ThT) is a general fluorescent probe used to detect amyloid fibril formation. However, the fluorescence emission range of ThT overlaps the autofluorescence from biological matter in tissue. When the synthetic compounds or nanomaterials are used in the general inhibition effect tests, their own absorbance band may interfere with ThT and result in misjudge. That encourages us to synthesize a series of ThT derivatives to overcome these problems. We aim to modify these probes and force these probes to emit in the near-infrared (NIR) range. AmySP-4-Nap-Ene (maximum λem at 685 nm) is one of these synthetic probes and shows a significant fluorescence enhancement toward hIAPP amyloid fibrils. We found that the binding affinity of AmySP-4-Nap-Ene to hIAPP fibrils is better than that of ThT. Afterward, we observed the fluorescence of the probe upon binding to hIAPP fibrils by using the total internal reflection fluorescence microscope. This probe did not induce significant cytotoxicity when incubated with the rat insulinoma cell (INS-1) within 48 h. Preliminary test results indicate that this probe would be used in the detection of amyloid fibrils.

    誌謝 i 摘要 ii Abstract iii Table of Contents iv List of Tables vi List of Figures vii Chapter 1. Introduction 1 1.1 Mechanism of Amyloid Aggregation and Structure Feature of Amyloid 1 1.2 The Correlation between Human Islet Amyloid Polypeptide (hIAPP) and Type 2 Diabetes (T2D) 3 1.3 Fluorescence Probes for Detecting Amyloid Fibrilization 5 1.4 Research Goal 11 Chapter 2. Material and Methods 12 2.1 Materials 12 2.2 Methods 13 2.2.1 Peptide Synthesis and Purification 13 2.2.2 Peptide Preparation 21 2.2.3 Preparation of Fluorescence Probes 22 2.2.4 Measurements of Absorbance and Emission Spectrum 22 2.2.5 Fluorescence Titration with hIAPP Fibrils 23 2.2.6 In Vitro Protein Aggregation Kinetic Assay 23 2.2.7 Transmission Electron Microscope, TEM 25 2.2.8 Circular Dichroism (CD) Spectroscope 27 2.2.9 Total Internal Reflection Fluorescence (TIRF) Microscope 28 2.2.10 Confocal Microscope 30 2.2.11 Cytotoxicity Assay 31 Chapter 3. Results and Discussion 33 3.1 Peptide Synthesis, Purification, and Identification 33 3.2 Absorbance and Emission Spectrum of ThT and AmySP-4 Series Probes 37 3.3 In Vitro Protein Aggregation Kinetics Monitored by AmySP-4-Nap-Ene 40 3.4 Fluorescence Titration of ThT and AmySP-4-Nap-Ene Probe to hIAPP Fibrils 42 3.5 Competitive Binding Kinetics of ThT and AmySP-4-Nap-Ene to hIAPP Fibrils 44 3.6 Detecting Other Amyloidogenic Protein Aggregates by AmySP-4-Nap-Ene Probe 45 3.7 In Vitro Imaging of hIAPP Fibrils by AmySP-4-Nap-Ene Using TIRF Microscope and Confocal Microscope 47 3.8 Cytotoxicity of AmySP-4-Nap-Ene 48 Chapter 4. Conclusion 50 Reference 51 Appendixes A1

    1. Sipe, J. D.; Benson, M. D.; Buxbaum, J. N.; Ikeda, S. I.; Merlini, G.; Saraiva, M. J.; Westermark, P., Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23 (4), 209-213.
    2. Makin, O. S.; Serpell, L. C., Structures for amyloid fibrils. FEBS J 2005, 272 (23), 5950-61.
    3. Xi, W.; W, G., Amyloid-β peptide aggregation and the influence of carbon nanoparticles. Chin Phys B 2016, 25 (1): 018704.
    4. Li, Y.; Zhao, C.; Luo, F.; Liu, Z.; Gui, X.; Luo, Z.; Zhang, X.; Li, D.; Liu, C.; Li, X., Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res 2018, 28 (9), 897-903.
    5. Cao, Q.; Boyer, D. R.; Sawaya, M. R.; Ge, P.; Eisenberg, D. S., Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol 2020, 27 (7), 653-659.
    6. Röder, C.; Kupreichyk, T.; Gremer, L.; Schäfer, L. U.; Pothula, K. R.; Ravelli, R. B. G.; Willbold, D.; Hoyer, W.; Schröder, G. F., Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nat Struct Mol Biol 2020, 27 (7), 660-667.
    7. Saghir, A. E.; Farrugia, G.; Vassallo, N., The human islet amyloid polypeptide in protein misfolding disorders: Mechanisms of aggregation and interaction with biomembranes. Chem Phys Lipids 2021, 234, 105010.
    8. Glabe, C. G., Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006, 27 (4), 570-5.
    9. Asthana, S.; Mallick, B.; Alexandrescu, A. T.; Jha, S., IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. Biochim Biophys Acta Biomembr 2018, 1860 (9), 1765-1782.
    10. Holman, N.; Young, B.; Gadsby, R., Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med 2015, 32 (9), 1119-20.
    11. Höppener, J. W.; Ahrén, B.; Lips, C. J., Islet amyloid and type 2 diabetes mellitus. N Engl J Med 2000, 343 (6), 411-9.
    12. Ferrannini, E., Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998, 19 (4), 477-90.
    13. Zheng, Y.; Ley, S. H.; Hu, F. B., Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018, 14 (2), 88-98.
    14. Opie, E. L., The relation oe diabetes mellitus to lesions of the pancreas. Hyaline degeneration of the islands oe Langerhans. J Exp Med 1901, 5 (5), 527-40.
    15. Kahn, S. E.; Andrikopoulos, S.; Verchere, C. B., Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 1999, 48 (2), 241-53.
    16. Sakagashira, S.; Sanke, T.; Hanabusa, T.; Shimomura, H.; Ohagi, S.; Kumagaye, K. Y.; Nakajima, K.; Nanjo, K., Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 1996, 45 (9), 1279-81.
    17. Kapurniotu, A.; Bernhagen, J.; Greenfield, N.; Al-Abed, Y.; Teichberg, S.; Frank, R. W.; Voelter, W.; Bucala, R., Contribution of advanced glycosylation to the amyloidogenicity of islet amyloid polypeptide. Eur J Biochem 1998, 251 (1-2), 208-16.
    18. Hull, R. L.; Westermark, G. T.; Westermark, P.; Kahn, S. E., Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 2004, 89 (8), 3629-43.
    19. Khemtémourian, L.; Killian, J. A.; Höppener, J. W.; Engel, M. F., Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res 2008, 2008, 421287.
    20. Kapoor, M.; Rossor, A. M.; Laura, M.; Reilly, M. M., Clinical presentation, diagnosis and treatment of TTR amyloidosis. J Neuromuscul Dis 2019, 6 (2), 189-199.
    21. Zhu, L.; Ploessl, K.; Kung, H. F., PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 2014, 43 (19), 6683-91.
    22. Clark, C. M.; Schneider, J. A.; Bedell, B. J.; Beach, T. G.; Bilker, W. B.; Mintun, M. A.; Pontecorvo, M. J.; Hefti, F.; Carpenter, A. P.; Flitter, M. L.; Krautkramer, M. J.; Kung, H. F.; Coleman, R. E.; Doraiswamy, P. M.; Fleisher, A. S.; Sabbagh, M. N.; Sadowsky, C. H.; Reiman, E. P.; Zehntner, S. P.; Skovronsky, D. M., Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 2011, 305 (3), 275-83.
    23. Kung, H. F.; Choi, S. R.; Qu, W.; Zhang, W.; Skovronsky, D., 18F stilbenes and styrylpyridines for PET imaging of A beta plaques in Alzheimer's disease: a miniperspective. J Med Chem 2010, 53 (3), 933-41.
    24. Ntziachristos, V.; Bremer, C.; Weissleder, R., Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 2003, 13 (1), 195-208.
    25. Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
    26. Biancalana, M.; Makabe, K.; Koide, A.; Koide, S., Molecular mechanism of thioflavin-T binding to the surface of beta-rich peptide self-assemblies. J Mol Biol 2009, 385 (4), 1052-63.
    27. Mora, A. K.; Singh, P. K.; Patro, B. S.; Nath, S., PicoGreen: a better amyloid probe than Thioflavin-T. Chem Commun (Camb) 2016, 52 (82), 12163-12166.
    28. Chang, W. M.; Dakanali, M.; Capule, C. C.; Sigurdson, C. J.; Yang, J.; Theodorakis, E. A., ANCA: A family of fluorescent probes that bind and stain amyloid plaques in human tissue. ACS Chem Neurosci 2011, 2 (5), 249-255.
    29. Gaur, P.; Galkin, M.; Kurochka, A.; Ghosh, S.; Yushchenko, D. A.; Shvadchak, V. V., Fluorescent probe for selective imaging of α-Synuclein fibrils in living cells. ACS Chem Neurosci 2021, 12 (8), 1293-1298.
    30. Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van de Velde, C. J.; Frangioni, J. V., Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 2013, 10 (9), 507-18.
    31. Gioux, S.; Choi, H. S.; Frangioni, J. V., Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 2010, 9 (5), 237-55.
    32. Ran, C.; Xu, X.; Raymond, S. B.; Ferrara, B. J.; Neal, K.; Bacskai, B. J.; Medarova, Z.; Moore, A., Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared probes for in vivo detection of amyloid-beta deposits. J Am Chem Soc 2009, 131 (42), 15257-61.
    33. Cui, M.; Ono, M.; Watanabe, H.; Kimura, H.; Liu, B.; Saji, H., Smart near-infrared fluorescence probes with donor-acceptor structure for in vivo detection of β-amyloid deposits. J Am Chem Soc 2014, 136 (9), 3388-94.
    34. Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A., The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 2009, 276 (20), 5960-72.
    35. Merrifield, R. B., Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 1969, 32, 221-96.
    36. Mochizuki, M.; Tsuda, S.; Tanimura, K.; Nishiuchi, Y., Regioselective formation of multiple disulfide bonds with the aid of postsynthetic S-tritylation. Org Lett 2015, 17 (9), 2202-5.
    37. Mant, C. T.; Chen, Y.; Yan, Z.; Popa, T. V.; Kovacs, J. M.; Mills, J. B.; Tripet, B. P.; Hodges, R. S., HPLC analysis and purification of peptides. Methods Mol Biol 2007, 386, 3-55.
    38. Holubová, M.; Lobaz, V.; Loukotová, L.; Rabyk, M.; Hromádková, J.; Trhlíková, O.; Pechrová, Z.; Groborz, O.; Štěpánek, P.; Hrubý, M., Does polysaccharide glycogen behave as a promoter of amyloid fibril formation at physiologically relevant concentrations? Soft Matter 2021, 17 (6), 1628-1641.
    39. Gras, S. L.; Waddington, L. J.; Goldie, K. N., Transmission electron microscopy of amyloid fibrils. Methods Mol Biol 2011, 752, 197-214.
    40. Nielsen, E. H.; Nybo, M.; Svehag, S. E., Electron microscopy of prefibrillar structures and amyloid fibrils. Methods Enzymol 1999, 309, 491-6.
    41. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006, 1 (6), 2876-90.
    42. Wei, Y.; Thyparambil, A. A.; Latour, R. A., Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochim Biophys Acta 2014, 1844 (12), 2331-7.
    43. Horrocks, M. H.; Lee, S. F.; Gandhi, S.; Magdalinou, N. K.; Chen, S. W.; Devine, M. J.; Tosatto, L.; Kjaergaard, M.; Beckwith, J. S.; Zetterberg, H.; Iljina, M.; Cremades, N.; Dobson, C. M.; Wood, N. W.; Klenerman, D., Single-molecule imaging of individual amyloid protein aggregates in human biofluids. ACS Chem Neurosci 2016, 7 (3), 399-406.
    44. Yamamura, H.; Suzuki, Y.; Imaizumi, Y., New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy. J Pharmacol Sci 2015, 128 (1), 1-7.
    45. Luo, Z.; Xu, H.; Liu, L.; Ohulchanskyy, T. Y.; Qu, J., Optical imaging of beta-amyloid plaques in Alzheimer's disease. Biosensors (Basel) 2021, 11 (8).
    46. Shahriari, N.; Grant-Kels, J. M.; Rabinovitz, H.; Oliviero, M.; Scope, A., Reflectance confocal microscopy: Principles, basic terminology, clinical indications, limitations, and practical considerations. J Am Acad Dermatol 2021, 84 (1), 1-14.
    47. van Meerloo, J.; Kaspers, G. J.; Cloos, J., Cell sensitivity assays: the MTT assay. Methods Mol Biol 2011, 731, 237-45.
    48. Berridge, M. V.; Herst, P. M.; Tan, A. S., Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005, 11, 127-52.
    49. Prot pi Protein Tool. n.d. Retrieved June 23, 2022, from https://www.protpi.ch/.
    50. Loksztejn, A.; Dzwolak, W., Noncooperative dimethyl sulfoxide-induced dissection of insulin fibrils: toward soluble building blocks of amyloid. Biochemistry 2009, 48 (22), 4846-51.

    無法下載圖示 本全文未授權公開
    QR CODE