簡易檢索 / 詳目顯示

研究生: 賴星宇
Hsin-Yu Lai
論文名稱: 2008年晚春到初夏期間台灣周遭海域的二氧化碳交換通量與分佈
Distribution and Air-Sea Exchange Flux of CO2 over the Marginal Seas surrounding Taiwan during Late Spring through Early Summer, 2008
指導教授: 吳朝榮
Wu, Chau-Ron
曾鈞懋
Tseng, Chun-Mao
學位類別: 碩士
Master
系所名稱: 海洋環境科技研究所
Graduate Institute of Marine Environmental Science and Technology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 南海西菲律賓海台灣西部近岸東海fCO2
英文關鍵詞: South China Sea, West Philippine Sea, Western Taiwan Coast, East China Sea
論文種類: 學術論文
相關次數: 點閱:277下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討台灣周遭海域表水二氧化碳的分佈及其海氣交換通量,並進一步瞭解其變化的成因及與水團分佈的關係。研究時間於2008年晚春初夏(5月28日至7月13日)於南海(South China Sea, SCS)、西菲律賓海(West Philippine Sea, WPS)、台灣西部近岸(Western Taiwan Coast, WTC)和東海(East China Sea, ECS)進行二氧化碳分壓(fCO2)的現場立即偵測,利用”二氧化碳分壓自動分析系統”(Automated Underway pCO2 System)來測量海水與大氣中之fCO2;所量測到的大氣fCO2範圍為367.4~402.2 μatm,其高值均發現在較靠近陸地的區域(台灣、中國大陸、呂宋島),高低濃度相差可達35 μatm。表水fCO2範圍:SCS介於352.3~415.6 μatm(389.3±16.5, n=1400)、WPS介於346.9~399.0 μatm(377.6±5.8, n=840)、WTC介於370.5~407.3 μatm(389.2±4.8, n=836)、ECS介於162~707 μatm(378±69, n=1497),以ECS的變化幅度最大,可達545 μatm;在長江和閩江沖淡水舌(Plume)區域發現海水中有著最低、次低的fCO2值(217、162 μatm),且fCO2分佈隨著經度由西向東而增加,與葉綠素a濃度的分佈趨勢相反,因此海水fCO2分佈主要隨浮游生物量的減少而產生梯度漸增的變化。長江與沿岸湧升流溫度低區,發現到海水中之fCO2分別有顯著的高值(707、676 μatm)存在,此區域有極低的透光度(13.9 %),極高的營養鹽(NO2+NO3)及葉綠素a(Chl-a)(32.2 μM、106.7 mg/m3),此海水含較高的fCO2推測可能來自於長江河水和沿岸湧升的底層水。SCS及WPS海域之水團較為穩定,其fCO2變化梯度均是由陸棚向外洋增加,這是由於近岸海水溫度較低且富含營養鹽葉綠素a,使得海水中的fCO2減少;在外洋區域生物作用較低,主要是反應日夜溫差(0.2~0.3℃),因此在SCS和WPS可清楚看出fCO2白日高晚上低(△fCO2 =7.9)。WTC表水fCO2整體變化幅度不大,但大氣fCO2受控於較接近陸源影響而呈現區域性的峰值。在晚春初夏期間,台灣周遭海域對於大氣來說皆是個二氧化碳的源(source),其二氧化碳溢散至大氣之整體交換通量在SCS約為1.74±2.06 mol C/m2/yr、WPS約為0.54±0.59、NWT約為0.29±0.18和ECS約為0.28±4.94。

    The distribution of CO2 in the surface water and the sea-air flux exchange in the sea areas around Taiwan are investigated in this study, and to discuss the reason of variation and the relationship with the distribution of water mass. Automated Underway pCO2 System are used to detect the seawater and air fCO2 during the late spring and early summer of 2008, from May 28 to July 13, including the South China Sea(SCS), the West Philippine Sea(WPS), the Western Taiwan Coast(WTC), and the East China Sea(ECS). The range of the atmospheric fCO2 is 367.4~402.2 μatm and the peaks are found near lands (Taiwan, China, and Luzon Island), the difference of concentration up to 35 μatm. The ranges of the surface water fCO2 are as follows: SCS: 352.3~415.6 μatm(Avg.= 389.3±16.5, n=1400), WPS: 346.9~399.0 μatm(Avg.= 377.6±5.8, n=840), TS: 370.5~407.3 μatm(Avg.= 389.2±4.8, n=836), ECS: 162~707 μatm(Avg.=378±69, n=1497); and ECS has the highest variation up to 545 μatm. The lowest and second lowest values of fCO2(217、162 μatm) are found in Changjiang Plume and Minjiang Plume, increasing from west to east with longitude and opposite to the concentration of chl-a. It’s quite obvious that the gradient of seawater fCO2 increase with the decrease of the biomass of plankton. The high values of fCO2(707、676 μatm) are found in Changjiang Upwelling and Coastal Upwelling which have low temperature. These areas also have very low transmittance(13.9 %) and very high nutrients(NO2+NO3) and Chl-a(32.2 μM, 106.7 mg/m3). It’s speculated that the high fCO2 may come from the bottom water of Changjiang Upwelling and Coastal Upwelling. Water masses in SCS and WPS are more stable and have the fCO2 gradient increase from shelf to offshore because the low temperature and rich of chl-a in nearshore seawater make the fCO2 of water decrease. In offshore, the fCO2 of SCS and WPS are high in daytime and low at night(△fCO2 =7.9), mainly reflecting the temperature difference between day and night(0.2~0.3℃) because of low biological effect. The surface water fCO2 of WTC has few variations but the atmospheric fCO2 has regional peaks because it is influenced by terrigenous matter. Data in this study suggests that the sea areas around Taiwan served as a source of atmospheric fCO2 during late spring and early summer, and the sea-to-air CO2 flux in SCS is +1.74±2.06 mol C/m2/yr, in WPS is +0.54±0.59, in WTC is +0.29±0.18, and in the ECS is +0.28±4.94.

    中文摘要..................................................I 英文摘要................................................III 圖目錄....................................................V 表目錄...................................................IX 附錄.....................................................IX 第一章 緒論...............................................1 1.1 邊緣海碳循環的重要性..................................1 1.2全球二氧化碳的海氣交換通量分佈.........................3 1.3海洋碳循環的作用機制...................................5 1.4.文獻回顧..............................................7 1.4.1 邊緣海的二氧化碳通量................................7 1.4.2 沿岸與河口及河川的二氧化碳通量......................8 1.5研究目的..............................................13 第二章 研究材料與方法....................................15 2.1 研究區域.............................................15 2.2 研究方法.............................................19 2.3儀器設備..............................................20 2.4 採樣及分析...........................................22 2.4.1海水二氧化碳........................................22 2.4.2大氣二氧化碳........................................23 2.5 其它參數之輔助資料...................................24 2.5.1海水參數............................................25 2.5.2氣象參數............................................26 2.6 二氧化碳之海氣交換通量計算...........................27 第三章 結果..............................................29 3.1二氧化碳與水文及化學參數之空間變化....................29 3.1.1水文及化學參數......................................29 3.1.2大氣二氧化碳........................................39 3.1.3表水二氧化碳........................................42 3.1.4二氧化碳分壓差......................................45 第四章 討論..............................................48 4.1溫度-鹽度(T-S)分佈圖................................48 4.2二氧化碳航跡時序與水文及化學參數關係..................52 4.2.1南海................................................52 4.2.2西菲律賓海..........................................56 4.2.3台灣西部近岸........................................58 4.2.4東海................................................60 4.3表水二氧化碳分壓主要控制因素探討......................63 4.4大氣二氧化碳不均衡....................................69 4.5二氧化碳海氣交換通量在各海域的差異....................70 4.6局部區域的二氧化碳海氣交換通量........................73 4.6.1南海................................................73 4.6.2西菲律賓海..........................................75 4.6.3台灣西部近岸........................................76 4.6.4東海................................................77 4.7文獻比較..............................................78 第五章 結論..............................................81 參考文獻.................................................84 圖目錄 圖2.1台灣周遭海域之6月夏天表面流場.......................17 圖2.2表水二氧化碳濃度航跡圖和水文測站及地理位置..........18 圖2.3二氧化碳分壓自動分析系統示意圖......................22 圖2.4大氣與表水的二氧化碳採樣設備架設示意圖..............24 圖3.1台灣周遭海域之溫度分佈圖............................34 圖3.2台灣周遭海域之鹽度分佈圖............................35 圖3.3台灣周遭海域之營養鹽濃度分佈圖......................36 圖3.4台灣周遭海域之透光度分佈圖..........................37 圖3.5台灣周遭海域之葉綠素a濃度分佈圖.....................38 圖3.6台灣周遭海域之大氣二氧化碳分壓分佈圖................41 圖3.7台灣周遭海域之表水二氧化碳分壓分佈圖................44 圖3.8台灣周遭海域之大氣與表水的二氧化碳分壓差分佈圖......47 圖4.1台灣周遭海域表水溫度與鹽度之關係圖..................49 圖4.2東海水團型態之分佈示意圖(2008年7月3 ~13日)........51 圖4.3南海二氧化碳航跡時序與水文及化學參數關係圖..........55 圖4.4西菲律賓海二氧化碳航跡時序與水文及化學參數關係圖....57 圖4.5台灣西部近岸二氧化碳航跡時序與水文及化學參數關係圖..59 圖4.6東海二氧化碳航跡時序與水文及化學參數關係圖..........62 圖4.7溫度、葉綠素a與表水二氧化碳相互關係圖...............68 圖4.8台灣周遭海域平均二氧化碳分壓差的比較................71 圖4.9調查期間之當月平均風速及風向........................72 圖4.10台灣周遭海域的二氧化碳海氣交換通量的比較...........73 圖4.11南海局部區域的二氧化碳海氣交換通量.................74 圖4.12西菲律賓海局部區域的二氧化碳海氣交換通量...........75 圖4.13台灣西部近岸局部區域的二氧化碳海氣交換通量.........76 圖4.14東海局部區域的二氧化碳海氣交換通量.................78 表目錄 表1.1全球各大洋之二氧化碳海氣交換通量.....................4 表1.2全球邊緣海的二氧化碳海氣交換通量的文獻回顧...........9 表1.3沿岸與河口及河川的二氧化碳通量文獻回顧..............12 表2.1二氧化碳分壓之採樣航次及日期簡表....................19 表3.1表水與大氣中的二氧化碳和水文及化學參數之簡表........33 表4.1東海水團的溫鹽特性(2008年7月3 ~13日)..............50 附錄 附錄一 航次軌跡圖........................................93 附錄二 2008年6月衛星海面溫度分佈.........................97 附錄三 2008年6月衛星海面葉綠素a分佈......................98 附錄四 各測站表水與大氣之二氧化碳分壓及水文化學參數......99

    Alvarez, M., Rios, A.F., Roson, G., 2002. Spatio-temporal variability of air-sea fluxes of carbon dioxide and oxygen in the Bransfield and Gerlache Straits during Austral summer 1995-96. Deep-Sea Research II 49, 643-662.

    Alvarez, M., Fernandez, E., Perez, F.F., 1999. Air-sea CO2 fluxes in a coastal embayment affected by upwelling: Physical versus biological control. Oceanologica Acta 22, 499-515.

    Astor, Y.M., Scranton, M.I., Muller-Karger, F., Bohrer, R., Garcia, J., 2005. fCO2 variability at the CARIACO tropical coastal upwelling time series station. Marine Chemistry 97, 245-261.

    Balino, B.M., Fasham, M.J.R., Bowles, M.C., 2001. Ocean biogeochemistry and global change. IGBP Science Series No. 2, 32.

    Bianchi, A.A., Bianucci, L., Piola, A.R., Pino, D.R., Schloss, I., Poisson, A., Balestrini, C.F., 2005. Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. Journal of Geophysical Research 110, 11.

    Boehme, S.E., Sabine, C.L., Reimers, C.E., 1998. CO2 fluxes from a coastal transect: A time-series approach. Marine Chemistry 63, 49-67.

    Borges, A.V., 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28, 3-27.

    Borges, A.V., Delille, B., Frankignoulle, M., 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters 32, 4.

    Borges, A.V., Delille, B., Schiettecatte, L.S., Gazeau, F., Abril, G., Frankignoulle, M., 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography 49, 1630-1641.

    Borges, A.V., Vanderborght, J.P., Schiettecatte, L.S., Gazeau, F., Ferron-Smith, S., Delille, B., Frankignoulle, M., 2004. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries 27, 593-603.

    Breviere, E., Metzl, N., Poisson, A., Tilbrook, B., 2006. Changes of the oceanic CO2 sink in the Eastern Indian sector of the Southern Ocean. Tellus 58B, 438-446.

    Cai, W.J., Dai, M.H., Wang Y.C., 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophysical Research Letters 33, 4.

    Cai, W.J., Wang, Y., 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography 43, 657-668.

    Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London.

    Chierici, M., Fransson, A., Turner, D.R., Pakhomov, E.A., Froneman, P.W., 2004. Variability in pH, fCO2, oxygen and flux of CO2 in the surface water along a transect in the Atlantic sector of the Southern Ocean. Deep-Sea Research II 51, 2773-2787.

    Chou, W.C., Gong, G.C., Sheu, D.D.D., Hung, C.C., Tsung F.T., 2009. Surface distributions of carbon chemistry parameters in the East China Sea in summer 2007. Journal of Geophysical Research 114, C07026.

    Chou, W.C., Sheu, D.D.D., Chen, C.T.A., Wang, S.L., Tseng, C.M., 2005. Seasonal variability of carbon chemistry at the SEATS time-series site, northern South China Sea between 2002 and 2003. Terrestrial Atmospheric and Oceanic Sciences 16, 445-465.

    Dai, M.H., Zhai, W.D., Cai, W.J., Callahan, J., Huang, B.Q., Shang, S.L., Huang, T., Li, X.L., Lu, Z.M., Chen, W.F., Chen, Z.Z., 2005. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea. Continental Shelf Research 28, 1416-1423.

    DeGrandpre, M.D., Olbu, G.J., Beatty, C.M., Hammar, T.R., 2002. Air-sea CO2 fluxes on the US Middle Atlantic Bight. Deep-Sea Research II 49, 4355-4367.

    Delille, B., Borges, A.V., Delille, D., 2009. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuarine Coastal and Shelf Science 81, 114-122.

    D'Ortenzio, F., Antoine D., Marullo, S., 2008. Satellite-driven modeling of the upper ocean mixed layer and air-sea CO2 flux in the Mediterranean Sea. Deep-Sea Research I 55, 405-434.

    Else, B.G.T., Yackel, J.J., Papakyriakou, T.N., 2008. Application of satellite remote sensing techniques for estimating air-sea CO2 fluxes in Hudson Bay, Canada during the ice-free season. Remote Sensing of Environment 112, 3550-3562.

    Etcheto, J., Boutin, J., Dandonneau, Y., Bakker, D.C.E., Feely, R.A., Ling, R.D., Nightingale, P.D., Wanninkhof, R., 1999. Air–sea CO2 flux variability in the equatorial Pacific Ocean near 110oW. Tellus 51B, 734-747.

    Fagan, K.E., Mackenzie, F.T., 2007. Air-sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Marine Chemistry 106, 174-191.

    Falkowski, P.G., Barber, R. T., Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200-206.

    Feely, R.A., Wanninkhof, R., Takahashi, T., Tans, P., 1999. Influence of El Nino on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398, 597-601.

    Feely, R.A., Wanninkhof, R., Milburn, H.B., Cosca, C.E., Stapp, M., Murphy, P.P., 1998. A new automated underway system for making high precision pCO2 measurements onboard research ships. Analytica Chimica Acta 377, 185-191.

    Fischer, H., Wahlen, M., Smith, J., Mastroianni, D., Deck, B., 1999. Ice Core Records of Atmospheric CO2 Around the Last Three Glacial Terminations. Science 283, 1712-1714.

    Frankignoulle, M., Borges, A.V., 2001. European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochemical Cycles 15, 569-576.

    Gao, Z.Y., Chen, L.Q., Gao, Y., 2008. Air-sea carbon fluxes and their controlling factors in the Prydz Bay in the Antarctic. Acta Oceanologica Sinica 27, 136-146.

    Gong, H., Zhang, Z., Zhang, C., Liu, L., Xing, L., 2007. Multilayer distribution of carbon dioxide system in surface water of the Yellow Sea in spring. Chinese Journal of Oceanology and Limnology 25, 1-15.

    Goyet, C., Millero, F.J., O'Sullivan, D.W., Eischeid, G., McCue, S.J., Bellerby, R.G.J., 1998. Temporal variations of pCO2 in surface seawater of the Arabian Sea in 1995. Deep-Sea Research I 45, 609-623.

    Green, R.E., Bianchi, T.S., Dagg, M.J., Walker, N.D., Breed, G.A., 2006. An organic carbon budget for the Mississippi River turbidity plume and plume contributions to air-sea CO2 fluxes and bottom water hypoxia. Estuaries and Coasts 29, 579-597.

    Gypens, N., Lancelot, C., Borges, A.V., 2004. Carbon dynamics and CO2 air-sea exchanges in the eutrophied coastal waters of the Southern Bight of the North Sea: A modelling study. Biogeosciences 1, 147-157.

    Hema, N., Chen, C.T.A., 2008. Biogeochemical cycling in the Taiwan Strait. Estuarine, Coastal and Shelf Science 78, 603-612.

    Hood, E.M., Merlivat, L., 2001. Annual to interannual variations of fCO2 in the northwestern Mediterranean Sea: Results from hourly measurements made by CARIOCA buoys, 1995-1997. Journal of Marine Research 59, 113-131.

    Hood, E.M., Merlivat, L., Johannessen, T., 1999. Variations of fCO2 and air-sea flux of CO2 in the Greenland Sea gyre using high-frequency time series data from CARIOCA drift buoys. Journal of Geophysical Research-Oceans 104, 20571-20583.

    Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., 2001. Climate Change 2001: The Scientific Basis contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ. press, Cambridge, 944.

    Huertas, I.E., Navarro, G., Rodriguez-Galvez, S., Lubian, L.M., 2006. Temporal patterns of carbon dioxide in relation to hydrological conditions and primary production in the northeastern shelf of the Gulf of Cadiz (SW Spain). Deep-Sea Research II 53, 1344-1362.

    Iwata, T., Yoshikawa, K., Nishimura, K., Higuchi, Y., Yamashita, T., Kato, S., Ohtaki, E., 2004. CO2 flux measurements over the sea surface by eddy correlation and aerodynamic techniques. Journal of Oceanography 60, 995-1000.

    Jeffery, C.D., Robinson, I.S., Woolf, D.K., Donlon, C.J., 2008. The response to phase-dependent wind stress and cloud fraction of the diurnal cycle of SST and air-sea CO2 exchange. Ocean Modelling 23, 33-48.

    Ji, L., Cui, H., Xin, S., Wang, J., Zhang, L., Lu, X., 2003. Characters of the pCO2 and CO2 flux in the East China Sea in autumn. Chinese Journal of Oceanology and Limnology 21, 180-186.

    John, D.E., Wang, Z.H.A., Liu, X.W., Byrne, R.H., Corredor, J.E., Lopez, J.M., Cabrera, A., Bronk, D.A., Tabita, F.R., Paul, J.H., 2007. Phytoplankton carbon fixation gene (RuBisCO) transcripts and air-sea CO2 flux in the Mississippi River plume. Isme Journal 1, 517-531.

    Kaltin, S., Anderson, L.G., 2005. Uptake of atmospheric carbon dioxide in Arctic shelf seas: evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Marine Chemistry 94, 67-79.

    Kaltin, S., Anderson, L.G., Olsson, K., Fransson, A., Chierici, M., 2002. Uptake of atmospheric carbon dioxide in the Barents Sea. Journal of Marine Systems 38, 31-45.

    Kamykowski, D., 1987. A preliminary biophysical model of the relationship between temperature and plant nutrients in the upper ocean. Deep-Sea Research 34, 1067-1079.

    Keeling, C.D., Whorf, T.P.,2004. Atmospheric CO2 records from sites in SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.

    Kim, D., Kim, D.Y., Kim, Y.J., Kang, Y.C., Shim, J., 2004. Downward fluxes of biogenic material in Bransfield Strait, Antarctica. Antarctic Science 16, 227-237.

    Klaassen, W., 2007. Carbon dioxide uptake by a temperate tidal sea. in Oceans 2007 – Europe, 123-126.

    Kuss, J., Roeder, W., Wlost, K.P., DeGrandpre, M.D., 2006. Time-series of surface water CO2 and oxygen measurements on a platform in the central Arkona Sea (Baltic Sea): Seasonality of uptake and release. Marine Chemistry 101, 220-232.

    Kuss, J., Nagel K., Schneider, B., 2004. Evidence from the Baltic Sea for an enhanced CO2 air-sea transfer velocity. Tellus 56B, 175-182.

    Lefevre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., Smyth, T., 2002. Observations of pCO2 in the coastal upwelling off Chile: Spatial and temporal extrapolation using satellite data. Journal of Geophysical Research 107, 15.

    Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A., Schauer, B., 2006. Summer and winter air-sea CO2 fluxes in the Southern Ocean. Deep-Sea Research I 53, 1548-1563.

    Murata, A., Takizawa, T., 2003. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Continental Shelf Research 23, 753-776.

    Nakaoka, S., Aiki, S., Nakazawa, T., Hashida, G., Morimoto, S., Yamanouchi, T., Yoshikawa-Inoue, H., 2006. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea. Tellus 58B, 148-161.

    Nelson, N.B., Bates, N.R., Siegel, D.A., Michaels, A.F., 2001. Spatial variability of the CO2 sink in the Sargasso Sea. Deep-Sea Research II 48, 1801-1821.

    Olsen, A., Trinanes, J.A., Wannitilchof, R., 2004. Sea-air flux of CO2 in the Caribbean Sea estimated using in situ and remote sensing data. Remote Sensing of Environment 89, 309-325.

    Omar, A. M., Johannessen, T., Olsen, A., Kaltin, S., Rey, F., 2007. Seasonal and interannual variability of the air-sea CO2 flux in the Atlantic sector of the Barents Sea. Marine Chemistry 104, 203-213.

    Padin, X.A., Navarro, G., Gilcoto, M., Rios, A.F., Perez, F.F., 2009. Estimation of air-sea CO2 fluxes in the Bay of Biscay based on empirical relationships and remotely sensed observations. Journal of Marine Systems 75, 280-289.

    Padin, X.A., Castro, C.G., Rios, A.F., Perez, F.F., 2008. fCO2(SW) variability in the Bay of Biscay during ECO cruises. Continental Shelf Research 28, 904-914.

    Padin, X.A., Vazquez-Rodriguez, M., Rios, A.F., Perez, F.F., 2007. Atmospheric CO2 measurements and error analysis on seasonal air-sea CO2 fluxes in the Bay of Biscay. Journal of Marine Systems 66, 285-296.

    Peng, T.H., Hung, J.J., Wanninkhof, R., Millero, F.J., 1999. Carbon budget in the East China Sea in spring. Tellus 51B, 531-540.

    Perez, F.F., Rios, A.F., Roson, G., 1999. Sea surface carbon dioxide off the Iberian Peninsula (North Eastern Atlantic Ocean). Journal of Marine Systems 19, 27-46.

    Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipendkov, V.Y., Lorius, C., Pe'pin, L., Ritz, C., Saltzman, E., Stievenard, M., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.

    Pipko, I.I., Repina, I.A., Salyuk, A.N., Semiletov, I.P., Pugach, S.P., 2008. Comparison of calculated and measured CO2 Fluxes between the ocean and atmosphere in the southwestern part of the East Siberia Sea. Doklady Earth Sciences 422, 1105-1108.

    Quay, P., 1987. Was a carbon balance measuredin the equatorial pacific? Deep-Sea Research II 44, 1765-1782.

    Raimbault, P., Slawyk, G., Boudjellal, B., Coatanoan, C., Conan, P., Coste, B., Garcia, N., Moutin, T., Pujo-Pay, M., 1999. Carbon and nitrogen uptake and export in the equatorial Pacific at 150oW: Evidence of an efficient regenerated roduction cycle. Journal of Geophysical Research 104, 3341-3356.

    Rehder, G., Suess, E., 2001. Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures. Marine Chemistry 75, 89-108.

    Rippeth, T.P., 2005. Mixing in seasonally stratified shelf seas: a shifting paradigm. Philosophical Transactions of the Royal Society 363, 2837-2854.

    Rixen, T., Goyet, C., Ittekkot, V., 2005. Diatoms and their influence on the biologically mediated uptake of atmospheric CO2 in the Arabian Sea upwelling system. Biogeosciences Discussions 2, 103-136.

    Roson, G., Alvarez-Salgado, X.A., Perez, F.F., 1999. Carbon cycling in a large coastal embayment, affected by wind-driven upwelling: Short-timescale variability and spatial differences. Marine Ecology-Progress Series 176, 215-230.

    Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., Sahlee, E., 2008. The annual cycle of carbon dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper. Journal of Marine Systems 74, 381-394.

    Sakamoto, A., Watanabe, Y.W., Osawa, M., Kido, K., Noriki, S., 2008. Time series of carbonate system variables off Otaru coast in Hokkaido, Japan. Estuarine Coastal and Shelf Science 79, 377-386.

    Santana-Casiano, J.M., Gonzalez-Davila, M., Laglera, L.M., 2002. The carbon dioxide system in the Strait of Gibraltar. Deep-Sea Research II 49, 4145-4161.

    Sarma, V.V.S.S., Swathi, P.S., Kumar, M.D. Prasannakumar, S., Bhattathiri, P.M.A., Madhupratap, M., Ramaswamy, V., Sarin, M.M., Gauns, M., Ramaiah, N., Sardessai, S., de Sousa, S.N., 2003. Carbon budget in the eastern and central Arabian Sea: An Indian JGOFS synthesis. Global Biogeochemical Cycles 17, 1-13.

    Sarma, V.V.S.S., 2003. Monthly variability in surface pCO2 and net air-sea CO2 flux in the Arabian Sea. Journal of Geophysical Research 108, 13.

    Sarma, V.V.S.S., Kumar, M. D., Gauns, M., Madhupratap, M., 2000. Seasonal controls on surface pCO2 in the central and eastern Arabian Sea. Proceedings of the Indian Academy of Sciences Earth and Planetary Sciences 109, 471-479.

    Sarmiento, J.L., Gruber N, 2002. Sinks for anthropogenic carbon. Physics Today 55(8), 30-36.

    Sarmiento, J.L., Orr, J.C., Siegenthaler, U., 1992. A perturbation simulation of CO2 uptake in an ocean general circulation model. Journal of Geophysical Research 97, 3621-3645.

    Shaffer, G., 1993. Effects of the marine biota on global carbon cycling. The Global carbon Cycle, 431-455.

    Shim, J., Kim, D., Kang, Y.C., Lee, J.H., Jang, S.T., Kim, C.H., 2007. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Continental Shelf Research 27, 2623-2636.

    Siegenthaler, U., Sarmiento, J.L., 1993. Atmospheric carbon dioxide and the ocean. Nature 365, 119-125.

    Shim, J., Kang, Y.C., Kim, D., Choi, S.H., 2006. Distribution of net community production and surface pCO2 in the Scotia Sea, Antarctica, during austral spring 2001. Marine Chemistry 101, 68-84.

    Siegenthaler, U., Sarmiento, J.L., 1993. Atmospheric carbon dioxide and the ocean. Nature 365, 119-125.

    Silvennoinen, H., Liikanen, A., Rintala, J., Martikainen, P.J., 2008. Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90, 193-208.

    Skjelvan, I., Johannessen, T., Miller, L.A., 1999. Interannual variability of fCO2 in the Greenland and Norwegian Seas. Tellus 51B, 471-489.

    Stoll, M.H.C., de Baar, H.J.W., Hoppema, M., Fahrbach, E., 1999. New early winter fCO2 data reveal continuous uptake of CO2 by the Weddell Sea. Tellus 51B, 679-687.

    Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J., Nojiri, Y., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects Deep-Sea Research II 49, 1601-1622.

    Ternon, J.F., Oudot, C., Dessier, A., Diverres, D., 2000. A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: the role of the Amazon River discharge. Marine Chemistry 68, 183-201.

    Thomas, H., Bozec, Y., Elkalay, K., de Baar, H.J.W., Borges, A.V., Schiettecatte, L.S., 2005. Controls of the surface water partial pressure of CO2 in the North Sea. Biogeosciences 2, 323-334.

    Thomas, H., Bozec, Y., Elkalay, K., de Baar, H.J.W., 2004. Response to Comment on "Enhanced Open Ocean Storage of CO2 from Shelf Sea Pumping". Science 306, 1477.

    Toggweiler, J.R., 1989. Is the downward dissolved organic matter (DOM) flux important in carbon transport? Productivity of the ocean: present and past, 65-83.

    Tseng, C.M., Wong, G.T.F., Chou, W.C., Lee, B.S., Sheu, D.D., Liu, K.K., 2007. Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep-Sea Research II 54, 1448-1468.

    Tsunogai, S., 2002. The western North Pacific playing a key role in global biogeochemical fluxes. Journal of Oceanography 58, 245-257.

    Tsunogai, S., Watanabe, S., Sato, T., 1999. Is there a "continental shelf pump" for the absorption of atmospheric CO2? Tellus 51B, 701-712.

    Tsunogai, S., Watanabe, S., Nakamura, J., 1997. A preliminary study of carbon system in the East China Sea. Journal of Oceanography 53, 9-17.

    Wang, S.L., Chen, C.T.A., Hong, G.H., Chung, C.S., 2000. Carbon dioxide and related parameters in the East China Sea. Continental Shelf Research 20, 525-544.

    Wang, S.L., Chen, C.T.A., 1996. Comparison of seawater carbonate parameters in the East China Sea and the Sea of Japan. La mer 34, 131-136.

    Wang, W.Q., Chen, L.Q., Yang, X.L., Huang, X.B., 2003. Investigations on distributions and fluxes of sea-air CO2 of the expedition areas in the Arctic Ocean. Science in China eries D-Earth Sciences 46, 569-579.

    Wang, Z.A., Cai, W.J., Wang, Y.C., Ji, H.W., 2005. The southeastern continental shelf of the United States as an atmospheric CO2 source and an exporter of inorganic carbon to the ocean. Continental Shelf Research 25, 1917-1941.

    Warminkhof, R, 2007. The impact of different gas exchange formulations and wind speed products on global air-sea CO2 fluxes. Environmental Science and Engineering, 1-23.

    Wanninkhof, R., Olsen, A., Trinanes, J., 2007. Air-sea CO2 fluxes in the caribbean sea from 2002-2004. Journal of Marine Systems 66, 272-284.

    Lee Chen, Y.l., Chen, H.Y., 2006. Seasonal dynamics of primary and new production in the northern South China Sea: The significance of river discharge and nutrient advection. Deep-Sea Research I 53, 971-986.

    Zhai, W.D., Dai, M.H., Guo, X.G., 2007. Carbonate system and CO2 degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China. Marine Chemistry 107, 342-356.

    Zhai, W.D., Dai, M.H., Cai, W.J., Wang, Y.C., Hong, H.S., 2005. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn. Marine Chemistry 96, 87-97.

    Zulicke, C., 2005. Air-sea fluxes including the effect of the molecular skin layer. Deep-Sea Research II 52, 1220-1245.

    下載圖示
    QR CODE