簡易檢索 / 詳目顯示

研究生: 林奎廷
Lin, Kuei-Ting
論文名稱: 利用有機金屬骨架製備中空多面體金屬氧化物混摻還原氧化石墨烯之鋰離子電池應用
Metal-Organic Frameworks derived Hollow Polyhydron Metal Oxide Hybridized with Reduced Graphene Oxide for Lithium Ion Batteries Application
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 89
中文關鍵詞: 鋰離子電池有機金屬骨架氧化銅氧化石墨烯
英文關鍵詞: Li-ion batteries, Cu-based metal-organic frameworks, cupric oxide, graphene oxide
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化銅是近年來鋰離子電池中備受矚目的陽極材料,因為擁有高理論電容量(~670 mAhg-1),成本低等優點,然而,在與鋰離子反應時會造成材料膨脹,而造成電池的負面的效果,以及低導電度的問題需要克服。
    此研究中以兩階段燒結氧化石墨烯與有機金屬骨架化合物[Cu3(btc)2]n(btc = benzene-1,3,5-tricarboxylate),製備中空多面體複合物 rGO-Cuox,將其應用在鋰離子電池上,並測試其電化學表現。在200 mAg-1電流密度下,rGO-Cuox第一圈電容量為662 mAhg-1,從第三圈開始,電容量隨循環圈數增加而增加,到達第220圈時,電容量逼近700 mAhg-1。在1000 mAg-1電流密度下,亦有類似之現象。與氧化石墨烯及[Cu3(btc)2]n有機金屬骨架化合物相比,此rGO-Cuox複合材料結構成功提升鋰離子電池之效能。

    Cupric oxide as anode for lithium ion batteries(LIB) has attracted much attention due to its high theoretical capacity(~670mAh g-1) and low cost. However, the disadvantages are poor electrical conductivity and large volume expansion during lithiation resulting in fast fading of the capacity of cupric oxide. In this study, we synthesized hollow polyhydron rGO-Cuox by two step sintering graphene oxide and metal-organic frameworks compound [Cu3(btc)2]n(btc = benzene-1,3,5-tricarboxylate). The obtained rGO-Cuox materials were used in a lithium-ion battery and tested the electrical performance. The first cycle capacity is 662 mAh g-1 at rate of 200mA g-1. From the third cycle, the capacity increased with cycle. The capacity is 700mAh g-1 at 220 cycle . Similar phenomenon appeared at rate of 1000mA g-1. Compare to graphene oxide and metal-organic frameworks compound, the rGO-Cuox composite material successfully improved the performance of lithium ion batteries.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XII 謝誌 XIII 第一章 緒論 1 1-1 前言 1 1-2 鋰離子電池之工作原理 3 第二章 文獻回顧與實驗動機 5 2-1 鋰離子電池組成之簡介 5 2-2 正極 (陰極) 材料 9 2-3 負極 (陽極) 材料 13 2-4 電解液 15 2-5 隔離膜 18 2-6 文獻回顧 19 2-6-1 氧化銅陽極的性質 20 2-6-2 不同形貌的氧化銅在鋰離子電池上的表現 22 2-6-3 零維氧化銅在鋰離子電池上的表現 30 2-6-4 氧化銅複合材料在鋰離子電池上的表現 35 2-7 研究動機 46 第三章 實驗 47 3-1 儀器設備 47 3-2 實驗藥品 48 3-3 材料鑑定與分析 49 3-3-1 XRD (X-ray Diffraction)粉末繞射分析 49 3-3-2 FE-SEM之表面型態分析 49 3-3-3 TEM之成像分析 50 3-3-4 FTIR紅外光光譜分析 50 3-3-5 Raman光譜(Raman spectra)分析 51 3-3-6 TGA熱重分析儀(Thermogravimetric analysis) 51 3-4 材料製備 52 3-4-1 氧化石墨烯(Hummers method)製備 52 3-4-2 Cu-MOF(Cu-based Metal-organic frameworks)製備 52 3-4-3 MOF-GO composite製備 53 3-4-4 rGO-CuOox composite製備 53 3-5 負極極片的製備 54 3-6 鈕扣型電池之組裝 57 3-7 鈕扣型電池之電化學分析 58 3-7-1 充放電循環之分析 58 3-7-2 循環伏安法(Cyclic Voltammetry)分析 58 3-7-3 交流阻抗(AC Impedance)分析 59 第四章 結果與討論 60 4-1 材料之鑑定 60 4-2 材料之充放電測試 67 4-3 材料之循環伏安法(Cyclic Voltammetry)分析 78 4-4 材料之交流阻抗(AC Impedance)分析 80 4-5 充放電後之電極表面分析 83 第五章 結論 85 參考文獻 86

    1.張國馨; Belov, D.; 謝登存, 工業材料雜誌, 2008, 260, 81-88.
    2.Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. MRS Bull., 1980, 15, 783.
    3.Chen, Z. J Electrochem Soc, 2002, 149, A1604–A1609.
    4.Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J.-M. J. Electrochem. Soc. 2001, 148, A171.
    5.Cho, J.; Kim, G. B.; Lim, H. S.; Kim C.-S.; Yoo. S.-I. Electrochemical and Sloid-State Letters., 1999, 2, 607-609.
    6.Whittingham M. S Chem. Rev. 2004, 104, 4271-4301.
    7.Takahashi, M.; Tobishima, S.-I.; Takei, K.; Sakurai, Y. Solid State Ionics, 2002, 148, 283.
    8.Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc., 1997, 144, 1188.
    9.Hu, Y.; Doeff, M. M.; Kostecki, R.; Finones, R.; J. Electrochem. Soc., 2004, 151, A1279.
    10.Prosini, P. P.; Zane, D.; Pasquali, M.; Electrochim. Acta, 2001, 46, 3517.
    11.Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S. Science, 1995, 270, 590.
    12.Yoshino, A., These ten years and feature of rechargeable battery materials, 2003, 110.
    13.Y. J. Mai, X. L. Wang, J. Y. Xiang, Y. Q. Qiao, D. Zhang, C.D. Gu, J. P. Tu, Electrochim. Acta 2011, 56, 2306-2311.
    14.M Armand, J. M. Tarascon. Nature, 2008, 451, 652-657.
    15.J.Y. Xiang, J.P. Tu, L. Zhang, Y. Zhou, X.L. Wang, S.J. Shi. J. Power Sources, 2010,195, 313-319.
    16.G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.M. Tarascon, S. Laruelle, J. Power Sources, 2008, 178, 409-421.
    17.J.Y. Xiang, J.P. Tu, Y.F. Yuan, X.H. Huang, Y. Zhou, L. Zhang, Electrochem. Commun, 2009, 11, 262-265.
    18.H.B. Wang, Q.M. Pan, J.W. Zhao, G.P. Yin, P.J. Zuo, J. Power Sources, 2007, 167, 206-211.
    19.X.H. Huang, J.P. Tu, Y.Z. Yang, J.Y. Xiang, Electrochem. Commun, 2008, 10, 16-19.
    20.H.C. Liu, S.K. Yen, J. Power Sources, 2007, 166, 478-484.
    21.S.-L. Chou, J.-Z.Wang, H.-K. Liu, S.-X. Dou, J. Power Sources, 2008, 182, 359-364.
    22.Zhang X, Zhang D, Ni X, Song J, Zheng H. J Nanopart Res 2008, 10, 839.
    23.Debart A, Dupont L, Poizot P, Leriche JB, Tarascon. J, Electrochem Soc, 2001, 148, 1266-1274.
    24.Grugeon S, Laruelle S, Urbina RH, Dupont L, Poizot P, Tarascon J, Electrochem, Soc, 2001, 148, 285-292.
    25.W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song and L. J. Wan, Adv. Mater., 2008, 20, 1160.
    26.D. H. Wang, D. W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay andJ. Liu, ACS Nano, 2009, 3, 907.
    27.Park, J. H.; Ko, J. M.; Park, O. O. J. Electrochem. Soc, 2003, 150, A864.
    28.Liao, S.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc. 2006, 128, 3504.
    29.Chen, J.; Liu, Y.; Minett, A. I.; Lynam, C.; Wang, J.; Wallace, G. G. Chem. Mater. 2007, 19, 3595.
    30.S. F. Zheng, J. S. Hu, L. S. Zhong, W. G. Song, L. J. Wan and Y. G. Guo, Chem. Mater. 2008, 20, 3617.
    31.A. K. Geim et al., Nature Materials, 2007, 6, 183-191.
    32.C. Lee, X. Wei, J.W. Kysar, J. Hone, Science. 2008, 321, 385.
    33.A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 2008, 8, 902.
    34.X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nano. 2008, 3, 491.
    35.R. R. Nair,1 P. Blake,1 A. N. Grigorenko,1 K. S. Novoselov,1 T. J. Booth,1 T. Stauber,2 N. M. R. Peres,2 A. K. Geim1. Science. 2008, 320, 1308.
    36.B. Wang, X. L. Wu, C. Y. Shu, Y. G. Guo, C. R. Wang, J. Mater. Chem. 2010, 20, 10661-10664.
    37.C. W. Sun, J. Sun, G. L. Xiao, H. R. Zhang, X. P. Qiu, H. Li andL. Q. Chen, J. Phys. Chem. B, 2006, 110, 13445.
    38.P. C. Wang, H. P. Ding, T. Bark and C. H. Chen, Electrochem. Acta, 2007, 52, 6650-6655.
    39.S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M. Tarascon, J. Electrochem. Soc. 2001, 148, A285-A292.
    40.Z. Da-Wei, Y. Tang-Hong, C. Chun-Hua, Nanotechnology, 2005, 16, 2338-2341.

    無法下載圖示 本全文未授權公開
    QR CODE