簡易檢索 / 詳目顯示

研究生: 潘乃瑜
Nai-Yu Pan
論文名稱: 碳六十固定化抗體感測器的研製與應用
Preparation and application of fullerene immobilized antibody on a piezoelectric immunosensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 122
中文關鍵詞: 碳六十抗體感測器石英壓電晶體免疫反應麥麩蛋白
英文關鍵詞: fullerene, antibody, immunosensor, piezoelectric crystal, immunity, gliadin
論文種類: 學術論文
相關次數: 點閱:398下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在研製一抗體的壓電晶體感測器,將塗佈碳六十的石英晶片作為研究碳六十與Anti-IgG抗體間的反應,以及運用此固定化之石英晶體感測器,偵測溶液中IgG抗體分子存在。結果顯示,碳六十能和Anti-IgG抗體結合,呈現出不可逆的化學吸附現象;碳六十與Anti-IgG抗體置於反應瓶反應,反應一天之後,發現有褐色的生成物,將此生成物經IR光譜的鑑定。並將其圖譜與碳六十光譜及抗體光譜做比較,得知產物是由碳六十及Anti-IgG抗體結合而成。
    Anti-IgG抗體與碳六十的反應的濃度及碳六十的塗佈量亦做探討。而接上碳六十的抗體石英晶片,亦能偵測出IgG抗體分子,證實碳六十與抗體結合後依然有活性。碳六十及Anti-IgG抗體石英晶片於4℃的保存條件下,可以達到七天的保存期限。碳六十的塗佈飽和量為1.3mg。而Anti-IgG抗體與IgG抗體的反應條件受到pH值、溫度、濃度的影響。研究顯示其最適pH值於6.7,最適溫度為30℃。而此探針的偵測極限可到達3.25×10-4mg/mL。此碳六十/Anti-IgG抗體石英晶體感測器經過重複使用七次,仍然不錯的再現性。
    本研究並對有機物質存在下,以石英晶體感測器感測Anti-IgG抗體和IgG抗體的反應,觀察有機物質對反應的影響。甲醇、乙醇、丙醇都做探討,發現其對本實驗有干擾。而苯甲酸、氨、丙酮、丙醛、苯甲醛的干擾也做探討。溶液中的鉛離子及銅離子的影響比較,銅離子影響本實驗較大。對於血液中的干擾物質如尿素(urea)、尿酸(uric acid)、維他命C(ascorbic acid)、半胱胺酸(cystein)、酪胺酸(tyrosine)亦做探討,發現其對於本實驗的影響並不大。鈉離子、鉀離子、鈣離子在10-3M濃度時,亦不會對本實驗造成干擾。
    本研究亦利用石英壓電晶體感測器探討麥麩蛋白抗體及麥麩蛋白的作用。結果顯示固定上碳六十石英晶片的麥麩蛋白依然有活性。血紅蛋白及血紅蛋白抗體的亦做探討,結果顯示固定上碳六十石英晶片的血紅蛋白依然有活性,可以偵測到血紅蛋白抗體。

    Fullerene C60/anti-human IgG was synthesized and applied in a piezoelectric crystal immunosensor for human IgG .The C60 /anti-human IgG coated piezoelectric quartz crystal sensor was employed to study the interaction between anti-human IgG and human IgG. The immobilized C60/anti-human IgG was identified with IR spectrography. The antibody(anti-human IgG)immobilization on C60 was studied with a C60-coated piezoelectric quartz crystal detection system. The antibody immobilization was influenced by C60 coating load and IgG concentration. The immobilized antibody was still actived. The life time of immobilized C60/anti-human IgG was 85% after 7 days. The interaction of anti-human IgG and human IgG was influenced by pH, reaction temperature, and concentration. Optimum pH of immobilized C60/anti-human IgG at 6.7 and optimum temperature at 30℃ were found. The piezoelectric immuno-sensor for human IgG also has exhibited good sensitivity and good reproducibility for reusage. The detection limit of the sensor was 3.25´10-4mg/mL for human IgG. The interaction of anti-human IgG and human IgG affinity in organic solvents such as methanol, ketone, benzonic acid,ammonia was also studied. The interference of ions and other compounds in blood were also investiged and discussed. Various metal ions such as Na+, K+, Ca2+ in aqueous solutions showed nearly no interference to the detection of human IgG with the piezoelectric immunosensor. The piezoelectric quartz crystal sensor was also employed to study the interaction between anti-gliadin and gliadin. The immobilized gliadin was still actived. The interaction between Hemoglobin and anti-hemoglobin was also studied by piezoelectric quartz crystal sensor.

    中文摘要 Ⅰ 英文摘要 Ⅲ 目錄 V 圖目錄 Ⅷ 表目錄 ⅩⅢ 第一章、緒論 1 1-1碳六十化學 1 1-1-1碳六十(C60)的發現 1 1-1-2碳六十基本性質 2 1-1-3碳六十的化學反應 6 1-1-3.1碳六十的有機化學反應 7 1-1-3.2碳六十無機化學反應 13 1-1-4 碳六十的運用 14 1-1-4.1碳六十在高溫超導的運用 14 1-1-4.2碳六十在藥物上的運用 16 1-2抗體及抗原的簡介 17 1-2-1免疫系統 17 1-2-2 抗體的形成 17 1-2-2.1抗原選擇製造抗體的淋巴細胞 19 1-2-2.2體液免疫 20 1-2-2.3 Anti-IgG的製造 21 1-2-3 抗體的結構 22 1-2-4.1免疫球蛋白G 24 1-2-4.2免疫球蛋白A 26 1-2-4.3免疫球蛋白M 27 1-2-4.4免疫球蛋白D 28 1-2-4.5免疫球蛋白E 29 1-2-5抗原的種類 30 1-2-6 抗原和抗體之間的作用力 30 1-2-7 麥麩蛋白 32 1-2-8 血紅蛋白 32 1-2-9免疫分析法的種類 33 1-3壓電晶體 38 1-3-1壓電晶體之壓電性 38 1-3-2石英振盪器 40 1-3-3石英振盪器的線路 43 1-3-4振盪頻率的量測 45 1-3-5石英微量天平 47 1-3-6石英壓電晶體在分析化學領域上的應用 50 1-3-6.1石英壓電晶體在氣相之應用 51 1-3-6.2石英壓電晶體在液相上的應用 51 1-3-7壓電晶體在生物感測器上的應用 55 1-3-8壓電晶體於免疫分析上之應用 56 第二章 實驗部分 58 2-1藥品及儀器 58 2-2實驗原理及目的 58 2-3 石英晶體的處理 59 2-4石英晶體表面塗佈液 59 2-4-1表面塗佈法 60 2-5實驗系統 61 2-5-1石英壓電晶體靜相實驗系統 62 2-5-2石英壓電晶體動相實驗系統 63 2-6實驗步驟 64 2-6-1碳六十與抗體間作用力之研究 64 2-6-2 Anit-IgG抗體和IgG抗體之研究 65 2-6-3碳六十與麥麩蛋白作用力的研究 66 2-6-4碳六十/麥麩蛋白與麥麩蛋白抗體作用力之研究 66 2-6-5碳六十與抗體之合成 66 第三章 實驗結果與討論 3-1碳六十與抗體間的吸附 67 3-1-1 塗佈碳六十石英晶體對IgG抗體的感應 67 3-1-2 碳六十的塗佈量效應及IgG抗體的濃度效應 67 3-1-3 抗體的吸附及脫附 68 3-2碳六十 ― 抗體固定化之研究 73 3-2-1碳六十 ―Anti-IgG 抗體的鑑定 73 3-2-2抗體固定方法之比較 77 3-3 碳六十/ Anti-IgG抗體- IgG抗體之探討 80 3-3-1 碳六十―抗體的活性 80 3-3-2碳六十/Anti-IgG抗體- IgG抗體之可逆性 80 3-3-3碳六十/Anti-IgG抗體- IgG抗體的濃度效應 83 3-3-4碳六十/Anti-IgG抗體- IgG抗體的溫度效應 86 3-3-5 碳六十/Anti-IgG抗體- IgG抗體的pH值效應 86 3-3-6碳六十/Anti-IgG抗體壓電晶體感測器的再現性 89 3-3-7碳六十/Anti-IgG抗體的儲存活性 89 3-4固定化感測系統受到干擾物質的影響 92 3-4-1血液中干擾物質的影響 92 3-4-2鹽類的影響 92 3-4-3金屬的影響 92 3-5探討有機物質對抗體及抗原結合的影響 102 3-6 麥膠蛋白的偵測 110 3-6-1碳六十-麥膠蛋白的結合 110 3-6-2 碳六十/麥膠蛋白-麥膠蛋白抗體的結合 110 3-7血紅蛋白的偵測 114 3-7-1碳六十-血紅蛋白的結合 114 3-7-2碳六十-抗血紅蛋白的結合 114 第四章 結論 122 第五章 參考資料 123 表 1-1 碳六十光譜性質 3 表 1-2 碳六十在不同溶劑之溶解度 4 表 1-3 免疫球蛋白的的五種類型 24 表 1-4 麥麩蛋白中的胺基酸組成 32 表 3-1 不同干擾物質對碳六十/抗體壓電感測器的影響 93

    1. Kroto, H. W.; Hoath, J. R.; Bricn, S. C.; Curl, R. F., Smalley, R. E. C60:Buckminsterfullerene.Nature.1985, 318, 162.
    2. Kratschmer, W.; Huffman, D. R. Solid C60: a new form of carbon.Nature(London). 1990,347,354.
    3. Hawkins, J. M.; Meyer, A.; Lewis, T. A.Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework.Science.1991, 252,312.
    4. Kroto, H. W.; Allaf, A. W.; Balm, S. P.C60: Buckminsterfullerence.Chem.Rev.1991, 91,1213.
    5. Chen, W.; Xu, Z. Temperature Dependence of C60 Solubility in Different Solvent.; Fullerence Science And Technology.1998, 6(4), 695.
    6. Taylor, R.; Walton, R. M.The chemistry of fullerenes.Nature.1993, 363, 685.
    7.沈立夫,碩士論文,國立台灣大學化研所,1996.
    8.王伯昌, 球烯、異球烯與巨球烯的結構、理論與計算, 化學, 1994,52,55.
    9.牟中原, 碳六十, 科學月刊, 1992,23,654.
    10. Tayler,R.The Chemistry of Fullerene.1995.
    11. Ando,W.;Akasaka, T. Reaction of C60 with Silylene, the First Fullerene Silirane Derivative.J.Am.Chem.Soc.1993,115,1605.
    12. Kahr .B.; Cooks R.G. Reaction of Fullerenes and Benzyne. J. Org. Chem.1992, 57,5069.
    13. Akasaka, T.;Ando,W.;Kobayashi,K. Addition of Azomethine Ylides to C60 : Synthesis,Characterization, and Functionalization of Fullerene Pyrrolidines. J.Am.Chem.Soc.1993,115,9798.
    14. Silwa,W.Fullerene Science and Technology.1996,4143,633.
    15. Chaing,L.Y. and Soled ,S.Evidence of Hemiketals Incorporated in the Structure of Fullerols Derived from Aqueous Acid Chemistry.J.Am.Chem.Soc.1993, 115,5453.
    16. Chaing , L. Y. ; Cameron ,S.Efficient Synthesis of Polyhydroxylated Fullerene Derivatives via Hydrolysis of Polycyclosufated Precursors. J.Org. Soc.1994, 59, 3960.
    17. Haddon,R.C.;Hebard,A.F.Conducting films of C60 and C70 by alkali-metal doping.Nature. 1991,350,320.
    18. Kampe, K.D.; Egger, N.;Vogel,M. Diamino and Tetraamino Derivatives of Buckminsterfullerene C60. Angew.Chem.1993,32,1174.
    19. Ohno,M.;Azumz,T.;Eguchi,S .Buckminsterfullerene C60-o-Quinone Methide Cycloadduct.Chem.Letters.1993, 1833.
    20. Friedman,S.H.; DeCamp ,D.L.; Sijbesma ,R.P.; Srdanov ,G. Synthesis of a Fullerene Derivative for the Inhibition of HIV Enzymes. J.Am.Chem.Soc.
    1993,115,6510.
    21. Marcorin,G. L.;Maurizio, P.* Design and Synthesis of Novel [60]Fullerene Derivatives as Potential HIV Aspartic Protease Inhibitors.Organic Letters.2000, 2(25), 3955-3958.
    22. Lu, C.; Czanderna, A. W. Applications of Piezoelectric Quartz Crystal Microblance. Elsevier Science, New York. 1984.
    23. 吳朗. 電子陶瓷-電壓. 全欣科技圖書. 1994.
    24. 吳朗. 感測與轉換-原理,元件與應用. 全欣科技圖書. 1994.
    25. Ikeda, T. Fundamentals of piezoelectricity. Oxford. Sci. Publ.1990.
    26. Geddes, L. A.; Bake, L. E. Principle of Applied Biomedical Instrumentation. (3rd Ed) John Wiley & Sons.NewYork.1989,163.
    27. Martin, S. J.; Frye, G. C.; Ricco, A. J. Effect of Surface Roughness on the response of Thickness-Shear Mode Resonators in Liquids.Anal.Chem.1993, 65, 2910.
    28.紀培錦. 新電子科技雜誌.1989, 17, 196.
    29.湯進德. 微電子界面技術. 全華科技圖書. 1984.
    30.袁帝文, 黃柏鈞. 數位邏輯設計與分析. 全新資訊圖書. 1992.
    31.江宗達, 鍾健文編譯. IBM PC與感測器介面的探討. 全華科技圖書. 1994.
    32. Hlavay, J.; Guilbault, G. G. Applications of the Piezoelectric Crystal Detector in Analytical Chemistry.Anal.Chem.1977, 49, 1890.
    33. Lu, C.; Czanderna, A. W. Application of piezoelectric quartz crystal microbalance. 1984,28.
    34. Christofides,M. Physis. Chemistry and Technology of Solid state Gas Sensor Device.New York, 1993.
    35. Chang, P.; Shih, J. S. Multi-channel piezoelectric quartz crystal sensor for organic vapors.Anal.Chim.Acta.2000, 403, 39.
    36. Gyorgy,B.; Jozsef, H. Application of an artificial neural network (ANN) and piezoelectric chemical sensor array for identification of volatile organic compounds.Talanta.1997, 44, 2237.
    37. Bruckenstein, S.; Shay, M. Experimental Aspects of Use the Quartz Crystal Microbalance in Solution. Electrochimica Acta.1985, 30, 1295.
    38. Thompson, M.; Kiplingt, A. L. Thickness-shear-mode Acoustic Wave Sensors in Liquid Phase A Review.Analyst.1991, 116, 881.
    39. 張怡南, 羅仲智 壓電石英晶體生物感測器 化學 58卷,第一期 頁187-193
    40. Caruso, F.; Rodda, E.; Furlong, D. N. Quartz Crystal Microbalance Study of DNA Immobilization and Hybridization for Nucleic Acid Sensor Development.Anal.Chem.1997, 69(11), 2043.
    41. Chun,L F.; Xu ,Yi. H. Study on highly sensitive potentiometric IgG immunosensor.Sensors& Actuators B.2000,66,190-192.
    42. Alberl, F. HIV serology using piezoelectric immunobiosensors. Sensors& Actuators B.1994, 18, 271-275.
    43. Ying-Sing, F.; Shi-Hui, Si. Piezoelectric crystal for sensing bacteria by immobilizing antibodies on divinylsulphone activated poly-m-aminophenol film.Talanta.2000, 51,151-158.
    44. Horacek,J.; Skladal, P.Effect of organic solvent on immunoassays of environmental pollutants studied using a piezoelectric biosensor.
    Anal. Chim .Acta.2000, 142, 37-45.
    45. Henger,A.; Decker ,J.Quartz crystal microbalance as a device for the screening of phage libraries. Biosensers&Bioelectronics. 1999,14,139-144.
    46. Storri,S.; Santoni, T.; Surface modifications for the development of piezoimmunosensors Biosensors & Bioelectronics.1998, 13, 3-4, 347-357.
    47. Pei, R.J.; Hu, J.M.; Zeng,Y. A Piezoelectric Immunosensor for Complement C4 Using Protein A oriented Immobilization of Antibody.J. Chem. Technol. Biotechnol. 1998,73,59-63.
    48. Murammatsu,H.Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins.Anal.Chem.1987,59, 2760-2763.
    49. Konig, B.; Gratzel, M.A. piezoelectrric immunosensor for hepatitiis viruses.
    Anal. Chim .Acta. 1995, 309, 19-25.
    50. Wu, Z. A novel approach of antibody immobilization based on n-butyl amine plasma-polymerized films for immunosensors. Anal. Chim .Acta.2000, 412,29-35.
    51. Rott, I. M. Essential immunology.1994.
    52.續光清; 食品化學, 1976.
    52.孔建民; 血清學問與答, 1994.
    53.陳豪勇; 免疫學, 2000.
    54. Muratsugu, M.; Kurosawa, S.; Kamo, N.Detection of Antistreptolysin O Antibody: Application of an Initial Rate Method of Latex Piezoelectric Immunnoassay.Anal.Chem.1992, 64, 2483-2487.
    55. Lu, B.; Xie, J.; Lu, C. Oriented immobilbization of Fab' Fragments on Silica Surfaces.Anal.Chem.1995, 67, 83-87.
    56. Brecht,A.; Piehler ,J.A diect optical immunosensor for atrazine detection.Anal.Chim.Acta.1995, 311,289-299.
    57. Deng, Le; He, F.J.A goat-anti-human IgG modified piezoimmunosensor for Staphylococcus aureus detection. J. Microbio.Meht.1995, 23, 229-234.
    58. Suri, C.R.; Mishra, G.C. Activating piezoelectric crystal surface by silanization for microgravimetric immunobiosensor application.Biosensors & Bioelectronics. 1996,11,1199-1205.
    59. Carvalho,L.; B,Jr. The use of polyvinyl alcohol glutaraldehyde antigen coated discs for laser induced fluorescence detection of plague.Sensors & Actuators B .1996,35-36,427-430.
    60. Buijs,J.; Willem,N. Changes in the secondary structure of absorbed IgG and F(ab’)2 Studied by FTIR spectroscopy.Langmuir.1996,12,1605-1613.
    61. Nakanishi, K.; Muguruma, H. A Novel Method of Immobilizing Antibodies on a Quartz Crystal Microbalance Using Plasma-Polymerized Films for Immunosensors.Anal.Chem.1996, 68, 1695-1700.
    62. Steegborn,C.; Skladalt ,P. Construction and characterization of the direct piezoelectric immunosensor for atrazine operating in solution.Biosensors & Bioelectronics. 1997,12,19-27.
    63. Hock, B.Antibodies for immunosensors A review.Anal.Chim.Acta.1997, 347,177-186.
    64. Saiki, T. Evaluation of binding of human serum albumin (HAS) to monoalonal and polyclonal antibody by means of piezoelectric immunosensing technique. Sensors & Actuators B.1997,42 .89-94.
    65. Kurosawa, S.; Kamo N. Dose response in solid-phase radioimmunoassay to human IgG on plasma-olymerized films coated with F(ab)2 anti-human IgG antibody. Material Science and EngineeringC.1997, 4,291-296.
    66. Rafati, H.; Lavelle, E.C. The immune response to a model antigen associated with PLG microparticles prepared using different surfactants.Vaccine.1997, 15,1888-1897.
    67. Bizet, K.; Gabruelli, C.; Perrot, H. Validation of antibody-based recognition by piezoelectric transducers through electroacoustic admittance analysis. Biosensors& Bioelectronics.1998, 13, 259-269.
    68. Renee, L.B.; Eric J. J. Piezoelectric quartz crystal biosensors.Talanta.1998, 46, 1223-1236.
    69. Kyusik, Y.; Kobatake, E. Use of Quartz Crystal Microbalance To Monitor Immunoliposome-antigen Interaction.Anal.Chem.1998, 70, 260-264.
    70. Tajima, I.; Asami, O.; Sugiura, E. Monitor of antibodies in human saliva using a piezoelectric quartz crystal biosensor. Anal. Chim Acta.1998, 365, 147-149.
    71. Nimeri,G.; Fredriksson ,C. Neutrophil interaction with protein-coated surfaces studied by an extended quartz crystl microbalabce technique. Colloid Surface B: Biointerfaces. 1998,11,255-264.
    72. Saito, N.; Takehisa M. Protein adsorption on self-assembled monolayers with water-souble non-ionic oligomers using quartz-crystal microbalance.
    Materials Science and Engineering.1998, 6,261-266.
    73. Darren, M.D.; David, C.; Cullen. Covalent coupling of immunoglobulin G to a poly(vinyl)alcohol-poly(acrylic acid)graft polymer as a method for fabricating the interfacial-recognition layer of a surface plasmon resonance immunosensor.Biosensor&Bioelectrics.1998, 13, 3-4,383-396.
    74. Jeff, J.C.; William, C. P. Evalution of amine-functionalized coatings for liquid-phase QCM applications.Thin Solid Films. 1998, 335, 237-244.
    75. Mei, Liu.;Qing, X. Li. Flow injection immunosensing of polycyclic aromatic hydrocarbons with a quartz crystal microbalance.Anal.Chim.Acta.1999, 387, 29-38.
    76. Pavey, K.D.; Ali, Z. J. Application of the quartz crystal microbalance to the monitoring of Staphylococcus epidermidis antigen-antibody agglutination.J.Pha.Bio.1999, 20,241—245.
    77. Skladal, P. Effect of methanol on the interaction of monoclonal antibody with free and immobilized atrazine studied using the resonant mirror-bases biosensor.Biosensor & Bioelectronics .1999,14, 257-263.
    78. Wu, Z.Y.; Shen,G.Li. A direct immunoassay for schistosomajaponium antibody(SjAb) in serum by piezoelectric body acoustic wave sensor.Anal.ChimActa.1999, 398, 57-63.
    79. Jos, B.; Willem, N. Changes in the secondary structure of absorbed IgG and F(ab’)2 Studied by FTIR spectroscopy.Langmuir.1996, 12,1605-1613.
    80. Tanaka, T.; Matsunaga,T *.Fully Automated Chemiluminescence Immunoassay of Insulin Using Antibody-Protein A-Bacterial Magnetic Particle Complexes. Anal.Chem.2000, 72(15), 3518-3522.
    81. Manning, C.D.; Lee, H. A. Use of Phosphonic Acid as a Generic Hapten in the Production of Broad Specificity Anti-Organophosphate Pesticide Antibody.Journal of Agricultural and Food Chemistry.2000, 48(6), 2228-2233.
    82. Harada, Y. *; Kuroda, M. Specific and Quantized Antigen-Antibody Interaction Measured by Atomic Force Microscopy.Langmuir.2000, 16(2), 708-715.
    83. Siiman, O.; Burshteyn, A. Tris(3-mercaptopropyl)-N-glycylaminomethane as a New Linker to Bridge Antibody with Metal Particles for Biological Cell Separations. Bioconjugate Chemistry.2000,11(4), 549-556.
    84. Mosher, C. L.; Henderson, E. Immunosensing Platforms Using Spontaneously Adsorbed Antibody Fragments on Gold.Anal.Chem 2000, 72(4); 703-710.
    85.Yongzhi, D.; Curtis,S. Heterogeneous Immunosensing Using Antigen and Antibody Monolayers on Gold Surfaces with Electrochemical and Scanning Probe Detection. Anal.Chem. 2000,72,2371-2376.
    86.Alberl, F. HIV serology using piezoelectric immunobiosensors. Sensors& Actuators B.1994, 18, 271-275.
    87. Wu,Z. Y.; Li, G. S .A PEG piezoelectric immunoassay for the determination of transferrin in human serum. Sensors& Actuators B.2000, 71,99-105.
    88. Avila, C.; Quesada, A. Evaluation of the applicability of two different immunoassays for the detection of wheat gluten in baby foods.Biochemistry and Molecular Biology Education. 2000,28,261-264.
    89. Osman, A. A.; Thomas, R.; Stern, M. The IgA subclass distributions of endomysium and gliadin antibodies in human sera are different.Clinica Chimica Acta.1996,255,145-152.
    90. Gloria, M.; Hansen,B. ; Thorkild, C. Hydrophobic interactions between gliadin and proteins and celiac disease .Life science.1996,23,1951-1960.
    91. Ferrari, C.; Johari, G.P. Thermodynamic behaviour of gliadins mixture and the glass-softening transition of its dried state.International Journal of Biological Macromolecules.1997, 21, 231-241.
    92.Sinha, N. K.; Yamamoto, H. Effects of flour chlorination on soft wheat gliadins analyzed by reversed-phase high-performance liquid chromatography, differential scanning calorimetry and fluorescence spectroscopy. Food Chemistry.1997,59, 387-393.
    93.Masam, S.;Yoshiak,U. Anti-glycated hemoglobin monoclonal antibody and method for measuring glycated hemoglobin.Biotechnology Advances.1997, 15, 233-234.
    94. Shih, J.S. (施正雄), 壓電晶體化學感測器的開發與運用, 科儀新知, Instruments Today. 2000, 114, 60-72.中國.
    95. Chuang, C.W. and Shih, J. S. Preparation and application of immobilized C60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sensors& Actuators B. 2001,81,1-8.
    96. Huang, L.; Chew, F.T.; Wong, S.M. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. JournalVirological Methods. 2002,99,1-2.

    QR CODE