研究生: |
簡家蓁 Chien, Chia-Chen |
---|---|
論文名稱: |
人工智慧面試官透過面試者之面部表情模擬多元評分者之人格特質評價之研究 Using an Intelligence Interview Agent to Infer Personality Trait Ratings by Multiple Observers Based on Interviewees' Facial Expressions |
指導教授: |
孫弘岳
Suen, Hung-Yue |
口試委員: | 陳建丞 林弘昌 孫弘岳 |
口試日期: | 2021/07/23 |
學位類別: |
碩士 Master |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 人工智慧面試官 、多元評分者 、性格判斷 、五大人格特質 、面部表情 |
英文關鍵詞: | intelligence interview agent, multi-rater, personality judgment, Big Five personality traits, facial expression |
DOI URL: | http://doi.org/10.6345/NTNU202100889 |
論文種類: | 學術論文 |
相關次數: | 點閱:168 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過往在人員甄選環節中,人格特質分數常被納入甄選標準內,過往常見評價方式分為兩種,應徵者之自我評價及面試官評價,而此兩種評價方法皆存在著評分偏誤的疑慮;有研究指出多元評分者(如:主管、同事、下屬或是客戶等)的分數在實務上更具意義,然而卻不適用於人員甄選環節。基於上述發現,本研究旨在建立一套能推估多元評分者(主管、同事、下屬與客戶)評價面試者之五大人格特質分數之人工智慧面試官。
本研究邀請50位在職之業務人員和30位在職之業務基層主管擔任模擬應徵者,並蒐集其自我評價五大人格特質資料與面試影像資料,同時邀請前者之主管、同事及客戶擔任多元評分者,邀請後者之下屬及客戶擔任多元評分者。接著,透過自我評價與多元評分者評估之人格特質評分,與模擬應徵者之面部表情建立模型,模型將可透過面試者之面部表情推估自我評價與其多元評分者之人格特質評分。研究結果顯示,本研究所建之人工智慧面試官推估主管評價之準確度落在93.4% - 95.2%、同事評價之準確度落在94.4% - 95.2%、客戶評價之準確度落在93.6% - 95.9%、自我評價之準確度落在86.2% - 89.5%。
During personnel selection, personality traits are usually included in the selection criteria. There are two common methods: self-report and the interviewers’ judgement. However, the abovementioned methods may suffer from biases. Previous studies have reported that judgements of multi-raters in the workplace, such as supervisors, peers, or customers, are more useful in practice. Unfortunately, this method is not applicable in personnel selection. Based on the aforementioned findings, the purpose of this study is to use an intelligence interview agent to infer personality trait ratings by multiple observers , including supervisors, peers, subordinates or customers.
I collected the data of personality judgements from self-report and video records from 50 salespeople and 30 sales managers (interviewees). I also collected the data of personality judgements from the salespeople’s supervisors, peers, and customers, and from the managers’ subordinates and customers (multi-raters). The model that was established by video records and personality judgements from interviewees and multi-raters was used to detect the interviewees’ facial expressions to infer personality judgements of the interviewees and multi-raters. The results show accuracies between 93.4%– 95.2% in the supervisor model, 94.4%–95.2% in the peer model, 93.6%–95.9% in the customer model, 86.2% - 89.5% in the interviewee model.
一、中文部份
吳明隆、涂金堂(2014)。SPSS 與統計應用分析。五南圖書出版股份有限公司。
周文賢(2002)。多變量統計分析SAS/STAT使用方法。智勝文化。
莊璦嘉、蘇弘文(2005)。主觀適配的特質環境前因與工作態度後果之探討。人力資源管理學報,1,1-27。
二、外文部份
Allik, J., Realo, A., Mõttus, R., Esko, T., Pullat, J., & Metspalu, A. (2010). Variance determines self-observer agreement on the big five personality traits. Journal of Research in Personality, 44(4), 421–426. https://doi.org/10.1016/j.jrp.2010.04.005
Allport, G. W. (1937). Personality: a psychological interpretation. Holt.
Anderson, M., & Anderson, S. (2007). Machine ethics: Creating an ethical intelligent agent. AI Magazine, 28, 15-26.
Asthana, A., Zafeiriou, S., Cheng, S., & Pantic, M. (2013). Robust discriminative response map fitting with constrained local models. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 3444-3451. https://doi.org/10.1109/CVPR.2013.442
Baldasaro, R. E., Shanahan, M. J., & Bauer, D. J. (2013). Psychometric properties of the Mini-IPIP in a large, nationally representative sample of young adults. Journal of Personality Assessment, 95(1), 74–84. https://doi.org/10.1080/00223891.2012.700466
Barrick, M. R., & Mount, M. K. (1991). The Big Five personality dimensions and job performance: A meta-analysis. Personnel Psychology, 44(1), 1-26. https://doi.org/10.1111/j.1744-6570.1991.tb00688.x
Barrick, M. R., Patton, G.K. and Haugland, S.N. (2000), Accuracy of interviewer judgments of job applicant personality traits. Personnel Psychology, 53(4), 925-951. https://doi.org/10.1111/j.1744-6570.2000.tb02424.x
Biel, J., & Gatica-Perez, D. (2013). The YouTube lens: Crowdsourced personality impressions and audiovisual analysis of vlogs. IEEE Transactions on Multimedia, 15(1), 41-55. https://doi.org/10.1109/TMM.2012.2225032
Blair, R. J. R. (2003). Facial expressions, their communicatory functions and neuro-cognitive substrates. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 358(1431), 561-572. https://doi.org/10.1098/rstb.2002.1220
Brunswik, E. (1956). Perception and the representative design of psychological experiments (2nd ed.). University of California Press.
Byars, L., & Rue, L. (1991). Human resource management. Irwin.
Cai, M., & Tanaka, J. (2019). Go together: Providing nonverbal awareness cues to enhance co-located sensation in remote communication. Human-centric Computing and Information Sciences, 9(19), 1-25. https://doi.org/10.1186/s13673-019-0180-y
Carcagnì, P., Del Coco, M., Leo, M., & Distante, C. (2015). Facial expression recognition and histograms of oriented gradients: a comprehensive study. SpringerPlus, 4, 645-645. https://doi.org/10.1186/s40064-015-1427-3
Carlson, J. G., & Hatfield, E. (1992). Psychology of emotion. Harcourt Brace Jovanovich.
Clark, J. M., & Paivio, A. (1989). Observational and theoretical terms in psychology: A cognitive perspective on scientific language. American Psychologist, 44(3), 500–512. https://doi.org/10.1037/0003-066X.44.3.500
Connelly, B. S., & Hülsheger, U. R. (2012). A narrower scope or a clearer lens for personality? Examining sources of observers' advantages over self-reports for predicting performance. Journal of Personality, 80(3), 603-631. https://doi.org/10.1111/j.1467-6494.2011.00744.x
Connelly, B. S., & Ones, D. S. (2010). An other perspective on personality: meta-analytic integration of observers' accuracy and predictive validity. Psychol Bull, 136(6), 1092-1122. https://doi.org/10.1037/a0021212
Connolly, J. J., Kavanagh, E. J., & Viswesvaran, C. (2007). The Convergent Validity between Self and Observer Ratings of Personality: A meta-analytic review. International Journal of Selection and Assessment, 15(1), 110–117. https://doi.org/10.1111/j.1468-2389.2007.00371.x
Conrad, D., & Newberry, R. (2011). 24 business communication skills: Attitudes of human resource managers versus business educators. American Communication Journal, 13(1), 4-23.
Consiglio, C., Alessandri, G., Borgogni, L., & Piccolo, R. F. (2013). Framing work competencies through personality traits: The Big Five Competencies grid. European Journal of Psychological Assessment, 29(3), 162-170. https://doi.org/10.1027/1015-5759/a000139
Cook, M. (2016). Personnel selection: Adding value through people—A changing picture (6th ed.). Wiley Blackwell.
Crivelli, C., & Fridlund, A. J. (2018). Facial displays are tools for social influence. Trends in Cognitive Sciences, 22(5), 388-399. https://doi.org/10.1016/j.tics.2018.02.006
De Groot, T., & Gooty, J. (2009). Can nonverbal cues be used to make meaningful personality attributions in employment interviews? Journal of Business and Psychology, 24(2), 179-192. https://doi.org/10.1007/s10869-009-9098-0
Donnellan, M. B., Oswald, F. L., Baird, B. M., & Lucas, R. E. (2006). The Mini-IPIP Scales: Tiny-yet-effective measures of the Big Five Factors of Personality. Psychological Assessment, 18(2), 192-203. https://doi.org/10.1037/1040-3590.18.2.192
Du, S., Tao, Y., & Martinez, A. M. (2014). Compound facial expressions of emotion. Proceedings of the National Academy of Sciences, 111(15), E1454-E1462. https://doi.org/10.1073/pnas.1322355111
Fleiss, J. L. (1999). Reliability of Measurement. In The Design and Analysis of Clinical Experiments (pp. 1-32). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118032923.ch1
Frank, M. G., & Svetieva, E. (2015). Microexpressions and deception. In M. K. Mandal & A. Awasthi (Eds.), Understanding facial expressions in communication: Cross-cultural and multidisciplinary perspectives (pp. 227–242). Springer Science + Business Media. https://doi.org/10.1007/978-81-322-1934-7_11
Fridlund, A. J. (2017). The behavioral ecology view of facial displays, 25 years later. In J.-M. Fernández-Dols & J. A. Russell (Eds.), The science of facial expression (pp. 77–92). Oxford University Press.
Funder, D. C. (1995). On the accuracy of personality judgment: A realistic approach. Psychological Review, 102(4), 652–670. https://doi.org/10.1037/0033-295X.102.4.652
Funder, D. C. (2012). Accurate personality judgment. Current Directions in Psychological Science, 21(3), 177-182. https://doi.org/10.1177/0963721412445309
Funder, D. C., Kolar, D. C., & Blackman, M. C. (1995). Agreement among judges of personality: Interpersonal relations, similarity, and acquaintanceship. Journal of Personality and Social Psychology, 69(4), 656-672. https://doi.org/10.1037/0022-3514.69.4.656
Gardner, W. L., Reithel, B. J., Cogliser, C. C., Walumbwa, F. O., & Foley, R. T. (2012). Matching personality and organizational culture: Effects of recruitment strategy and the five-factor model on subjective person–organization fit. Management Communication Quarterly, 26(4), 585-622. https://doi.org/10.1177/0893318912450663
Guilford, J. P. (1959). Personality. McGraw-Hill.
Hall, J. A., Andrzejewski, S. A., Murphy, N. A., Mast, M. S., & Feinstein, B. A. (2008). Accuracy of judging others' traits and states: Comparing mean levels across tests. Journal of Research in Personality, 42(6), 1476–1489. https://doi.org/10.1016/j.jrp.2008.06.013
Hammal, Z., Couvreur, L., Caplier, A., & Rombaut, M. (2007). Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model. International Journal of Approximate Reasoning, 46(3), 542-567. https://doi.org/https://doi.org/10.1016/j.ijar.2007.02.003
Hinton, P., McMurray, I., & Brownlow, C. (2014). SPSS explained. Routledge.
Hirschmüller, S., Schmukle, S. C., Krause, S., Back, M. D., & Egloff, B. (2018). Accuracy of self‐esteem judgments at zero acquaintance. Journal of Personality, 86(2), 308–319. https://doi.org/10.1111/jopy.12316
Hough, L., & Dilchert, S. (2010). Personality: Its measurement and validity for employee selection. In J. L. Farr & N. T. Tippins (Eds.), Handbook of employee selection (pp. 299–319). Routledge/Taylor & Francis Group.
Hurtz, G. M., & Donovan, J. J. (2000). Personality and job performance: The Big Five revisited. Journal of Applied Psychology, 85(6), 869–879. https://doi.org/10.1037/0021-9010.85.6.869
Ilies, R., Fulmer, I. S., Spitzmuller, M., & Johnson, M. D. (2009). Personality and citizenship behavior: The mediating role of job satisfaction. Journal of Applied Psychology, 94(4), 945–959. https://doi.org/10.1037/a0013329
Jo, H., & Yoon, Y. I. (2018). Intelligent smart home energy efficiency model using artificial TensorFlow engine. Human-centric Computing and Information Sciences, 8(9), 1-18. https://doi.org/10.1186/s13673-018-0132-y
Johnston, B., & Chazal, P. d. (2018). A review of image-based automatic facial landmark identification techniques. EURASIP Journal on Image and Video Processing, 2018(86), 1-23. https://doi.org/10.1186/s13640-018-0324-4
Kim, H., Di Domenico, S. I., & Connelly, B. S. (2019). Self–other agreement in personality reports: A meta-analytic comparison of self- and informant-report means. Psychological Science, 30(1), 129-138. https://doi.org/10.1177/0956797618810000
King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10, 1755–1758.
Kluemper, D. H., McLarty, B. D., Bishop, T. R., & Sen, A. (2015). Interviewee selection test and evaluator assessments of general mental ability, emotional intelligence and extraversion: Relationships with structured behavioral and situational interview performance. Journal of Business and Psychology, 30(3), 543-563. https://doi.org/10.1007/s10869-014-9381-6
Kristof-Brown, A., & Guay, R. P. (2011). Person–environment fit. In S. Zedeck (Ed.), APA handbook of industrial and organizational psychology, Vol. 3. Maintaining, expanding, and contracting the organization (pp. 3–50). American Psychological Association. https://doi.org/10.1037/12171-001
Liu, Y., Zhang, J., Yan, W., Wang, S., Zhao, G., & Fu, X. (2016). A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Transactions on Affective Computing, 7(4), 299-310. https://doi.org/10.1109/TAFFC.2015.2485205
Mandal, F. B. (2014). Nonverbal communication in humans. Journal of Human Behavior in the Social Environment, 24(4), 417-421. https://doi.org/10.1080/10911359.2013.831288
McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60(2), 175-215. https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
Merget, D., Rock, M., & Rigoll, G. (2018). Robust facial landmark detection via a fully-convolutional local-global context network. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 781-790. https://doi.org/10.1109/CVPR.2018.00088
Mount, M. K., Barrick, M. R., & Strauss, J. P. (1994). Validity of observer ratings of the big five personality factors. Journal of Applied Psychology, 79(2), 272-280. https://doi.org/10.1037/0021-9010.79.2.272
Naim, I., Tanveer, M. I., Gildea, D., & Hoque, M. E. (2018). Automated analysis and prediction of job interview performance. IEEE Transactions on Affective Computing, 9(2), 191–204. https://doi.org/10.1109/TAFFC.2016.2614299.
Nestler, S., & Back, M. D. (2013). Applications and extensions of the lens model to understand interpersonal judgments at zero acquaintance. Current Directions in Psychological Science, 22(5), 374-379. https://doi.org/10.1177/0963721413486148
Oh, I.-S., Wang, G., & Mount, M. K. (2011). Validity of observer ratings of the five-factor model of personality traits: A meta-analysis. Journal of Applied Psychology, 96(4), 762-773. https://doi.org/10.1037/a0021832
Ones, D. S., Dilchert, S., Viswesvaran, C., & Judge, T. A. (2007). In support of personality assessment in organizational settings. Personnel Psychology, 60(4), 995-1027. https://doi.org/10.1111/j.1744-6570.2007.00099.x
Ötting, S. K., & Maier, G. W. (2018). The importance of procedural justice in Human–Machine Interactions: Intelligent systems as new decision agents in organizations. Computers in Human Behavior, 89, 27-39. https://doi.org/10.1016/j.chb.2018.07.022
Paulhus, D. L., & Reynolds, S. (1995). Enhancing target variance in personality impressions: Highlighting the person in person perception. Journal of Personality and Social Psychology, 69(6), 1233–1242. https://doi.org/10.1037/0022-3514.69.6.1233
Paulhus, D. L., & Vazire, S. (2007). The self-report method. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 224–239). The Guilford Press.
Pitaloka, D. A., Wulandari, A., Basaruddin, T., & Liliana, D. Y. (2017). Enhancing CNN with preprocessing stage in automatic emotion recognition. Procedia Computer Science, 116(C), 523-529. https://doi.org/https://doi.org/10.1016/j.procs.2017.10.038
Polikovsky, S., Kameda, Y., & Ohta, Y. (2010). Detection and measurement of facial micro-expression characteristics for psychological analysis. The Institute of Electronics, Information and communication Engineers.
Pursche, T., Clauß, R., Tibken, B., & Möller, R. (2019). Using neural networks to enhance the quality of ROIs for video based remote heart rate measurement from human faces. 2019 IEEE International Conference on Consumer Electronics (ICCE), 1-5. https://doi.org/10.1109/ICCE.2019.8661915
Rasipuram, S., Jayagopi, D.B. (2018). Automatic assessment of communication skill in interview-based interactions. Multimedia Tools and Applications, 77, 18709–18739. https://doi.org/10.1007/s11042-018-5654-9
Rothstein, M. G., & Goffin, R. D. (2006). The use of personality measures in personnel selection: What does current research support? Human Resource Management Review, 16(2), 155-180. https://doi.org/10.1016/j.hrmr.2006.03.004
Ryan, A. M., Reeder, M. C., Golubovich, J., Grand, J., Inceoglu, I., Bartram, D., Derous, E., Nikolaou, I., & Yao, X. (2017). Culture and testing practices: Is the world flat? Applied Psychology: An International Review, 66(3), 434-467. https://doi.org/10.1111/apps.12095
Sadeghi, H., & Raie, A.-A. (2019). Human vision inspired feature extraction for facial expression recognition. Multimedia Tools and Applications, 78(21), 30335-30353. https://doi.org/10.1007/s11042-019-07863-z
Salgado, J. F. (1997). The five factor model of personality and job performance in the European Community. Journal of Applied Psychology, 82(1), 30–43. https://doi.org/10.1037/0021-9010.82.1.30
Scherer, K. R., & Giles, H. (1979). Social markers in speech. Cambridge University Press.
Schlenker, B. R., & Weigold, M. (1992). Interpersonal processes involving impression regulation and management. Annual Review of Psychology, 43(1), 133-168. https://doi.org/10.1146/annurev.ps.43.020192.001025
Sears, G. J., Zhang, H., Wiesner, W. H., Hackett, R. D., & Yuan, Y. (2013). A comparative assessment of videoconference and face-to-face employment interviews. Management Decision, 51(8), 1733-1752. https://doi.org/10.1108/MD-09-2012-0642
Shreve, M., Godavarthy, S., Goldgof, D., & Sarkar, S. (2011). Macro- and micro-expression spotting in long videos using spatio-temporal strain. 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), 51-56. https://doi.org/10.1109/FG.2011.5771451
Sitser, T., van der Linden, D., & Born, M. P. (2013). Predicting sales performance criteria with personality measures: The use of the general factor of personality, the Big Five and narrow traits. Human Performance, 26(2), 126–149. https://doi.org/10.1080/08959285.2013.765877
Srivastava, R., Feng, J., Roy, S., Yan, S., & Sim, T. (2012). Don't ask me what i'm like, just watch and listen. Proceedings of the 20th ACM international conference on Multimedia, 329–338. https://doi.org/10.1145/2393347.2393397
Su, Y.-S., Suen, H.-Y., & Hung, K.-E. (2021). Predicting behavioral competencies automatically from facial expressions in real-time video-recorded interviews. Journal of Real-Time Image Processing. https://doi.org/10.1007/s11554-021-01071-5
Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2019). TensorFlow-based automatic personality recognition used in asynchronous video interviews. IEEE Access, 7, 61018-61023. https://doi.org/10.1109/ACCESS.2019.2902863
Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2020). Intelligent video interview agent used to predict communication skill and perceived personality traits. Human-centric Computing and Information Sciences, 10(1), 3. https://doi.org/10.1186/s13673-020-0208-3
Swider, B. W., Barrick, M. R., & Harris, T. B. (2016). Initial impressions: What they are, what they are not, and how they influence structured interview outcomes. Journal of Applied Psychology, 101(5), 625-638. https://doi.org/10.1037/apl0000077
Takalkar, M., Xu, M., Wu, Q., & Chaczko, Z. (2018). A survey: Facial micro-expression recognition. Multimedia Tools and Applications, 77(15), 19301-19325. https://doi.org/10.1007/s11042-017-5317-2
Van Iddekinge, C. H., Raymark, P. H., & Roth, P. L. (2005). Assessing personality with a structured employment interview: Construct-related validity and susceptibility to response inflation. Journal of Applied Psychology, 90(3), 536-552. https://doi.org/10.1037/0021-9010.90.3.536
Vinciarelli, A., & Mohammadi, G. (2014). A survey of personality computing. IEEE Transactions on Affective Computing, 5(3), 273-291. https://doi.org/10.1109/TAFFC.2014.2330816
Viswesvaran, C., Deller, J., & Ones, D. S. (2007). Personality measures in personnel selection: Some new contributions. International Journal of Selection and Assessment, 15(3), 354-358. https://doi.org/10.1111/j.1468-2389.2007.00394.x
Wille, B., Hofmans, J., Feys, M., & De Fruyt, F. (2014). Maturation of work attitudes: Correlated change with big five personality traits and reciprocal effects over 15 years. Journal of Organizational Behavior, 35(4), 507-529. https://doi.org/https://doi.org/10.1002/job.1905
Yan, W.-J., Wu, Q., Liang, J., Chen, Y.-H., & Fu, X. (2013). How fast are the leaked facial expressions: The duration of micro-expressions. Journal of Nonverbal Behavior, 37(4), 217-230. https://doi.org/10.1007/s10919-013-0159-8
Yudin, D. A., Dolzhenko, A. V., & Kapustina, E. O. (2020). The usage of grayscale or color images for facial expression recognition with deep neural networks. In B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, & Y. Tiumentsev (Eds.), Advances in Neural Computation, Machine Learning, and Cognitive Research III (pp. 271-281), Springer. https://doi.org/10.1007/978-3-030-30425-6_32