簡易檢索 / 詳目顯示

研究生: 王智仁
論文名稱: 小腦模型控制器於串級影像壓縮之研究
A Study of Cascade Compress Image based on Cerebellar Model Articulation Controller
指導教授: 洪欽銘
Hong, Chin-Ming
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 91
中文關鍵詞: 小腦模型控制器串級影像壓縮影像修補
英文關鍵詞: CMAC, cascade image compression, image retrieval
論文種類: 學術論文
相關次數: 點閱:213下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文提出一個影像串級壓縮技術,係連結小腦模型控制器(CMAC)與傳統影像處理技術而成,影像串級壓縮技術兼備了二者的優點。相較於傳統影像壓縮技術,影像串級壓縮技術能有較優異的影像壓縮效能,有效率的壓縮影像資料是有助於加速影像資料傳送的速度與精簡影像資料儲存的空間。
    再者,本論文提出一個影像修補的原理,這個影像修補原理是藉由小腦模型控制器優越的類化與學習能力來達成。影像修補原理運用簡捷的修正程序,即可以使影像受損的部分獲得不錯的辨識效果。事實上,影像串級壓縮的成效與影像修補的良莠都是完全取決於小腦模型控制器類化的程度與學習的精度。然而,為提高壓縮比率伴隨而來之影像精確度降低的結果是無法避免的,所以小腦模型控制器類化的程度是必須被限定在一定的範圍內。
    最後,經由實驗證明,應用小腦模型控制器於影像串級壓縮與影像修補技術上都能獲致良好的效能。

    Abstract
    The thesis proposes a cascade of image compression technique that joins Cerebellar Model Articulation Controller (CMAC) with conventional image processing method in image compression procedure. This cascade of image compression technique combines the merits of two together and has more effective capability of image compression compared to some conventional image compression techniques. Thus it can effectively decreases image data for reducing transmission speed or storage utilization efficiency.
    Moreover, the thesis presents a novel method of image retrieval that using the perfect generalization and learning properties of CMAC. This image retrieval method simply gets good recognition for the part of damaging images. In fact, the capability of the image compression and the performance of the image retrieval all are based on the degree of generalization and exactness of learning. However, there is a trade off between advantages and accuracy of image. Thus the demand of the degree of generalization must be limited.
    Finally, from experiential results that apply CMAC to cascade image compression and image retrieval are able to achieve advantages and good performance.

    總 目 錄 中文摘要………………………………………………………………...I 英文摘要………………………………………………………………...II 總目錄……………………………………………………………….….III 圖目錄…………………………………………………………………..V 表目錄……………………………………………………………..….VIII 第一章 緒論………………………………………………….………….1 1.1研究背景與動機…………………………………………………1 1.2研究目的………………………………………………….……...3 1.3研究範圍與限制………………………….…………………..….4 1.4研究方法…………………….…………..……………………….5 1.5研究步驟…………………………………………………….…...6 第二章 影像壓縮理論……………………..………………………...….8 2.1影像壓縮與還原的架構模型…..…………………………….….9 2.2目前最常使用的影像壓縮方式--JPEG……………..…………11 2.3影像壓縮技術的明日之星--小波轉換……………….……..…15 2.3.1小波轉換…………………………………………...……...16 2.3.2小波壓縮與合成………………………………...………...17 2.3.3二維小波轉換……………………………………...……...20 2.4影像壓縮必須考量的因素……………………………….……24 第三章 小腦模型控制器理論…………………………………………27 3.1小腦模型控制器的理論背景與發展過程..…...………………27 3.2 小腦模型控制器…………………………………….….……..28 3.2.1小腦模型控制器的學習與回想…………………….……29 3.2.2小腦模型控制器的記憶體映射方式………………….…31 3.3二維小腦模型控制器的演算法………………………….…….36 3.4數值分析方法之餘數法….………………………………….…39 3.4.1餘數訓練法之小腦模型控制器………….……………….42 第四章 串級影像壓縮……………………….…………..………….…44 4.1 CMAC的影像修補原理…………………………………….…44 4.2 CMAC的影像壓縮原理……………………………………….45 4.3串級影像壓縮系統架構…………..…...……………………….46 第五章 實驗……..…………………….…………..……………48 5.1 CMAC學習能力的實驗…………………………………….…48 5.2 CMAC學習及區域類化能力的實驗………………………….49 5.3 CMAC影像資料壓縮實驗…...…..…...……………………….50 5.4 CMAC影像修補實驗力的實驗.....…...……………………….51 5.5餘數法小腦模型控制器之實驗...…………….…….………….53 5.6小波影像壓縮之實驗….……………………………………….56 5.7串級影像壓縮系統之實驗……………..………………………59 第六章 研究結論與建議……………….…………..………….….86 6.1 研究結論……………...…………………………………….…86 6.2 研究建議……………………………...……………………….87 參考文獻………………………………………..………………….88 作者簡歷……………………………………..…………………….91

    參考文獻
    英文部分
    [1] R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Addison Wesley, 1992.
    [2] R. J. Clarke, " Digital Compression of still Image and Video", Academic Press, 1995.
    [3] W. H. Fang, N. C. Hu and S. K. Shih, " Recursive fast computation of the two-dimensional discrete cosine transform," IEEE Proceedings on Vision, Image and Signal Processing, Vol. 146, No. 1, Feb. 1999, pp.25-33.
    [4] De Natale, F.G.B., Perra, C., Vernazza, G.,"DCT information recovery of erroneous image blocks by a neural predictor", Selected Areas in Communications, IEEE Journal , Vol. 18, June. 2000, pp. 1111 –1121.
    [5] ISO/IEC JTC1/SC29/WG11, " JPEG-8-R8 Committee Draft," 1990.
    [6] W. B. Pennebaker and J. L. Mitchell, "JPEG: Still Image Data Compression Standard, " New York: Van Nostran Reinhold, 1993.
    [7] B. L. Yeo and Liu, "A unified approach to temporal segmentation of motion JEPG and MPEG compressed video, " in Proc. of Int. conf. On Multimedia Computing and Systems, May 1995, pp.81-88.
    [8] ISO/IEC JTC1/SC29/WG1 N1422, "JPEG2000 Verification Model5.2 (Technical Description ), " 1999.
    [9] C. S. Burrus, R. A. Gopinath, and H. Guo. "Introduction to Wavelet and Wavelet Transfroms. Englewood Cliffs " NJ: Prentice Hall,1998.
    [10] J. S. Albus, “Data storage in the cerebellar model articulation controller,” J. Dynamic Syst., Measurement, Contr., Sep. 1975, pp. 228--233.
    [11] J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller (CMAC)" ,Journal of Dynamic System, Measurement, and Control, Transactions of ASME, Vol. 97, no. 3, 1975 , pp. 220-227.
    [12] W. Thomas Miller, Filson H. Glanz and L. Gordon Kraft, “CMAC: An Associative Neural Network Alternative to Backpropagation,” Proceeding of the IEEE, Vol.78, No.10, 1990, pp.1561-1567.
    [13] W. T. Miller, “Real-Time Neural Network Control of A Biped Walking Robot,” IEEE Control Systems Magazine, Vol.141, 1994, pp.41-48.
    [14] F.H. Glanz; W.T. Miller; and L.G. Kraft, ” An overview of the CMAC neural network”, IEEE Conf., Neural Networks for Ocean Engineering, 1991, pp. 301 -308.
    [15] M. Brown; C.J.Harris, “The modelling abilities of the binary CMAC” IEEE Conf. Neural Networks, vol. 3, 1994, pp. 1335 -1339.
    [16] P.E. An; S. Aslam-Mir; M. Brown; C.J.Harris; D. McLean, “Theoretical aspects of the CMAC and its application to high-dimensional aerospace modelling problems” IEE Conf. Control, vol. 2, 1994, pp. 1466 -1471.
    [17] Zi-Qin Wang; J.L Schiano; M. Ginsberg, “Hash-coding in CMAC neural networks,” IEEE Proc. Neural Networks, vol. 3, 1996, pp. 1698 -1703.
    [18] Luo Zhong; Zhao Zhongming; Zhu Chongguang, “The unfavorable effects of hash coding on CMAC convergence and compensatory measure”, IEEE Proc. ICIPS, vol. 1, 1997, pp.419-422.
    [19] Hahn-Ming Lee;Chih-Ming Chen;Yung-Feng Lu,"A Self-organizing HCMAC Neural Network Classifier", Neural Networks, 2001. Proceedings, IJCNN’01. International joint Conference on, Vol 3, 2001, pp. 1960-1965.
    [20] Chun-Shin Lin; Chien-Kuo Li, “A low-dimensional-CMAC-base neural network” IEEE Proc. Systems, Man and Cybernetics, vol. 2, 1996, pp.1297-1302.
    [21] A. Menozzi; M.-Y Chow, “On the training of a multi-resolution CMAC neural network,” IEEE Proc. ISIE, vol. 3, 1997, pp.1201-1205.(1-07)
    [22] C. S. Lin and C. K. Li, “A Sum-of-Product Neural Network (SOPNN),” Neurocomputing, Vol.30, 2000, pp.273-291.
    [23] Y. Iiguni, “Hierarchical Image Coding via Cerebellar Model Arithmetic Computers,” IEEE Trans. Image Processing, 1996, Vol.5, No.10.
    [24] J. S. Ker, Y. H. Kuo, R. C. Wen and B. D. Liu, “Hardware Implementation of CMAC Neural Network with Reduced Storage Requirement,” IEEE Trans. Neural Network, Vol.8, No.6, 1997, pp.1545-1556.
    [25] F. C. Chen and C. H. Chang, “Practical Stability Issues in CMAC Neural Network Control Systems,” IEEE Trans. Control Syst. Technol., Vol. 4, No.1, 1996, pp. 86-91.
    [26] S.H. Lane, D.A. Handelman, J.J. Gelfand, “Theory and development of higher-order CMAC neural networks”, IEEE Control Systems Magazine, vol. 12, 1992 , pp. 23 -30.
    [27] Shun-Feng Su, Ted Tao, and Ta-Hsiung Hung, “Credit Assigned CMAC and Its Application toOnline Learning Robust Controllers”, IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 33, NO. 2, APRIL 2003, pp.202-213.
    [28] Ted Tao, and Ta-Hsiung Hung, “The CA-CMAC for Downsampling Image Data Size In the Compressive Domain”, 2002 IEEE SMC WA1H2.
    [29] Ted Tao, Hung-Chig Lu, Chau-Yun Hus, and Ta-Hsiung Hung, “THE ONE-TIME LEARNING HIERARCHICAL CMAC AND THE MEMORY LIMITED CA-CA-CMAC FOR IMAGE DATA COMPRESSION”, Journal of the Chinese Institute of Engineers, Vol. 26, No. 2, 2003, pp133-145.
    中文部分
    [30] 陳同孝、張真誠、黃國峰,”數位影像處理技術”,松崗電腦圖書,2001。
    [31] 陳同孝、張真誠、黃國峰,”電子影像技術”,松崗電腦圖書,2000。
    [32] 繆紹綱,”數位影像活用Matlab”,全華科技圖書,2002。
    [33] 楊武智,”影像處理與辨識”,全華科技圖書,1998。
    [34] 羅維恆,”植基於扇形區間滑動模式之小腦模型控制器之研究”,國立台灣師範大學工業教育研究所碩士論文,2001。
    [35] 黃昭諺,”間時滑動模式之可微分小腦模型控制器設計”,國立台灣師範大學工業教育研究所碩士論文,2001。

    QR CODE