簡易檢索 / 詳目顯示

研究生: 顏德琮
TeTsung Yen
論文名稱: 探討以概念改變策略促進代數符號理解對代數成就表現及學習興趣之影響-以一元一次方程式為例
Exploring how the algebraic symbol comprehension promoted by conceptual-change strategies affects middle school students’ performance and learning interest of algebra-An investigation of linear equation with one unknown.
指導教授: 邱美虹
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 154
中文關鍵詞: 代數代數符號概念改變學習興趣一元一次方程式
英文關鍵詞: algebra, algebraic symbol, conceptual change, learning interesting, linear equation with one unknown
論文種類: 學術論文
相關次數: 點閱:331下載:53
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從過去學者的研究發現(Küchemann,1981、郭汾派、林光賢與林福來,民78、袁媛, 民82)代數符號具有多種意義(特定數、一般數、變數等等),而學生對各種代數符號意義也有不同層次的理解,因此本研究主要目的是要探討學生對代數符號意義的理解與代數成就表現的關係。
    本研究共有兩個部分:研究一從128位國三學生在代數成就評量試卷以及代數符號理解試卷中的表現探討理解代數符號意義與代數成就表現間的相關性。研究二調查197位(五個班級)未學過代數課程的國一學生對代數符號是否存在另有理解;再從這五個班級中挑出表現接近的兩個班級作為實驗組(40人)與對照組(36人),在實驗組學習一元一次方程式過程中加入五次運用概念改變策略並強調符號意義的班級活動,期望提升對代數符號的理解及學習的興趣,最後再比較與對照組間的差異。本研究另從實驗組挑出六位學生,藉晤談、觀察等資料收集方式瞭解其在學習、活動歷程中的概念發展。
    從研究一的結果發現國三學生的代數成就表現與符號理解情形之間具有高度相關性。研究二的結果發現學習代數前有近六成的學生將符號視為代表特定(範圍)的數或對代數表示法是存在另有的理解,而某些另有理解方式對代數學習是會造成負面的影響;透過本研究的學習活動,實驗組學生對符號代表一般數及變數的理解明顯優於對照組,但在後測中的代數成就表現與對照組則無明顯差異,而是某幾種錯誤類型出現的比例較低以及對數學抱持較正面的學習態度;此外,由本研究亦可發現透過教師安排、引導下,學生是樂於有意義地使用代數符號及規則。

    Based on the research of Küchemann (1981), Kuo, Lin, & Lin (1989) and Yuan (1993), algebraic symbols can be regarded as different meanings (e.g. evaluated numbers, generalized numbers and variables), and comprehended in different ways. The purpose of this thesis is to explore the relationship between the students’ comprehension of algebraic symbols and the performance of it.
    This study consists two parts. First, it began with 128 nine-grade students participating a test to build the correlation between the understanding of algebraic symbols and the performance in algebra. Second, 197 seven-grade students from five classes, who haven’t learned algebra formally, were the subjects. The exploration cares about how these subjects comprehend the formal algebraic symbols before learning. Among these five classes, two performed similarly were assigned as the experimental class and controlled class to join the advanced study. In the experimental class, the designed instruction of linear equation with one unknown, five external activities were designed to promote the understanding and conceptual change of algebraic symbols. Meanwhile six students from experimental class were selected to be interviewed and observed about their learning in and after each activity.
    The result of this study reveals strong correlation between the comprehension of algebraic symbols and their performance of learning algebra. Sixty percent of subjects regard the formal algebraic symbols as fixed numbers or with different rules before learning. Some alternative conceptions become the obstacles in comprehending algebra. The experimental class performs better to take algebraic symbols as generalized numbers and variables. However, in the post-test, no significant difference was found between the students in the experimental class and those in the controlled one except some error types and attitude in learning. This study also reveals that students would be glad to learn and operate algebraic symbols meaningfully if teachers guide them appropriately.

    第一章 緒論…………………………………..…………….…1 第一節 研究動機………………..…………..………………….…1 第二節 研究目的與問題…………………..……………………...6 第三節 名詞釋義…………………………..………………...……8 第四節 研究範圍與限制…………………..…………………….10 第二章 文獻探討………………………….…………………11 第一節 代數符號…………………………..…………………….11 第二節 國中小學教科書中的代數符號….…………………….15 第三節 代數符號的認知發展層次………..…………………….19 第四節 代數符號與代數學習……………..…………………….29 第五節 概念改變的機制………………….…………………….36 第三章 研究方法……………………..………………...……43 第一節 研究設計……………………..………………………….43 第二節 研究對象……………………..………………………….45 第三節 研究步驟與流程……………..………………………….46 第四節 研究工具……………………..………………………….48 第五節 資料處理與分析……………..………………………….56 第四章 結果分析與討論……………………………...……..59 第一節 國三學生理解代數符號意義與代數成就間的關係.…..59 第二節 學生在學習代數課程前對代數符號的理解…………...78 第三節 藉概念改變策略促進符號理解對代數成就的影響…...87 第四節 綜合比較…………………………………………….…112 第五節 綜合討論………………………………………….……119 第五章 結論與建議…………………………………....…...127 第一節 結論………………………………………………...…..127 第二節 建議………………………………………………….…132 參考文獻…………………………………………………...…138 附錄一 國三代數學習成就評量單…………………………………143 附錄二 國三代數符號意義評量單……………………………..…146 附錄三 國一代數學習前評量單………………………………..…148 附錄四 國一代數學習成就評量單……………………………..…150 附錄五 學習態度問卷(實驗組).…………………………..….152 附錄六 學習態度問卷(對照組)…………………………….…..153 附錄七 活動設計及工作單………………………………………….154

    王秀密(民76):代數的診斷教學。科學教育月刊,100,33-35。
    江佳惠(民90):以幾何面積為類比物教授國一代數乘法公式之研究。國立彰化師範大學科學教育研究所碩士論文。
    李儼(民72):中國古代數學簡史,p304。台北市:九章出版。
    林清山(民82)譯:教育心理學-認知取向(Richard E. Mayer1987著),p160。台北市:遠流。
    林清山、張景媛(民83):國中生代數應用題教學策略效果之評估。國立台灣師
    範大學教育心理與輔導系教育心理學報,27期,36-63。
    林靜雯(民89):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立台灣師範大學科學教育研究所碩士論文。
    邱美虹(民89):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    洪萬生(民80):孔子與數學:一個人文的懷想,p55,pp93-115。台北市:明文。
    洪萬生(民85):數學史與代數學習。科學月刊,27(7),560-567。
    袁媛(民82):國中一年級學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學數學教育研究所碩士論文。
    國立編譯館(民86):國民小學數學教學指引第十一冊。
    國立編譯館(民86):國民小學數學課本第一~十一冊。
    國立編譯館(民86):國民中學數學教師手冊第一冊。
    張素鎔(民76):初等代數的學習困難。科學教育月刊,100,23-29。
    張勝和(民84):乘法公式理解之研究以國中生為例。國立彰化師範大學科學教育研究所碩士論文。
    張景媛(民83):數學文字題錯誤概念分析及學生建構數學概念的研究。國立台灣師範大學教育心理與輔導系教育心理學報,27,175-200。
    教育部統計處(民86):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十五學年度第一學期)。
    教育部統計處(民87):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十六學年度第一學期)。
    教育部統計處(民90):台灣地區中等以下各級學校學生學習及生活概況調查報告(八十九學年度第一學期)。
    郭汾派、林光賢、林福來(民78):國中生文字符號概念的發展。國科會專題研究計畫報告,NSC76-0111-S003-08、NSC77-0111-S003-05A。
    曾月紅(民85):符號學與認知學習、科際整合、教育研究的關係。教育資料與研究,9,66-68。
    黃幸美(民90):生活數學之教學理念與實務。教育研究月刊,91,63-73。
    蔡聰明(民84):從代數看算術。科學月刊,29(2),149。
    戴文賓、邱守榕(民88):國一學生由算術領域轉入代數領域呈現的學習現象與特徵。科學教育,10,148-175。
    謝孟珊(民89):以不同符號表徵未知數對國二學生解方程式表現之探討。國立台北師範學校數理教育研究所碩士論文。
    謝新傳(民89):由現代國民應有的數學素養談九年一貫教育。中等教育,51(6),136-141。
    謝豐瑞(民84):數學教育指標研究-國中代數技能與解題能力學習進展指標, 國科會專題研究計畫,NSC 84-2511-S-003-B14,33-37。
    魏金財(民81):兒童對雨量之概念及其概念之改變類型。國教學報,4,225-256。
    Carraher, D., Schliemann, A. D. & Brizuela, B. (2001, in press). Can young students operate on unknowns? In Proceedings of the XV International Conference for the Psychology of Mathematics Education. Utrecht, Holland, July, 10 pp.
    Elliott, B., Oty, K., Mcarthur, J., & Clark, B. (2001).The effect of an interdisciplinary algebra/science course on students’ problem solving skills, critical thinking skills and attitudes towards mathematics. International Journal of Mathematical Education in Science and Technology, 32, 811-816.
    Harper, E. W. (1987). Ghosts of Diophantus. Educational studies in mathematics, 18, 75-90.
    Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational studies in mathematics, 27, 59-78.
    Hiebert, J. (1988). A theory of developing competence with written mathematical symbols. Educational Studies in Mathematics, 19, 333-355.
    Hweson, P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for conceptual change. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 199-218). Dordrecht ; Boston : Kluwer Academic.
    Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.),
    Handbook of research on mathematics teaching and learning (pp. 390-419). New York: Macmillan.
    Küchemann, D. (1981). Children’s understanding of numerical variables. Mathematics in school, 7(4), 23-26.
    Lee, L., & Wheeler, D. (1989). The arithmetic connection. Education Studies in
    Mathematics, 20, 41-54.
    MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation:
    11-15. Educational Studies in Mathematics, 33, 1-19.
    Malvern, D. (2000). Mathematical Models in Science. In J. K. Gilbert & C.J. Boulter (eds.), Developing Models in Science Education (pp. 59-90). Dordrecht ; Boston : Kluwer.
    Philipp, R. A. (1992). The many uses of algebraic variables. Mathematics Teacher, 85(7), 557-561.
    Philipp, R. A., & Schappelle, B. P. (1999). Algebra as Generalized Arithmetic: Starting with the Known for a Change. Mathematics Teacher, 92(4), 310-316.
    Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond Cold Conceptual Change: The Role of Motivational Beliefs and Classroom Contextual Factors in the Process of Conceptual Change. Review of Educational Research, 63(2), 167-199.
    Pintrich, P. R. (1999). Motivational Beliefs as Resources for and Constraints on
    Conceptual Change. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New
    Perspectives on Conceptual Change (pp. 33-50). New York: Pergamon.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation
    of a scientific conception: toward a theory of conceptual change. Science education, 66(2), 211-227.
    Rubenstein, R. N., & Thompson, D. R. (2001). Learning Mathematical Symbolism:
    Challenges and Instructional Strategies. Mathematics Teacher, 94(4), 265-271.
    Ryan, A. M., & Patrick, H. (2001). The Classroom Social Environment and Changes in Adolescents’ Motivation and Engagement During Middle School. American Educational Research Journal, 38, 437-460.
    Sfard, A. (1991). On the Dual Nature of Mathematical Conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
    Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification- The case of algebra. Educational studies on mathematics, 26, 191-228.
    Skemp, R. R. (1987). Symbols. In The psychology of learning mathematics(pp. 46-65). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Stacey, K., & MacGregor, M. (1997). Ideas about symbolism that students bring to algebra. Mathematics Teacher, 90(2), 110-113.
    Tall, D. O., Gray, E. M., Ali, M. B, Crowley, L., DeMarois, P., McGowen, M., Pitta, D., Pinto, M. M., Thomas, M. O., & Yusof, Y. (2001). Symbols and the Bifurcation between Procedural and Conceptual Thinking. Canadian Journal of Science, Mathematics and Technology Education, 1, 80-104.
    Tirosh, D., Even, R., & Robinson, N. (1998). Simplifying alegebraic expressions: Teacher awareness and teaching approaches. Educational Studies in Mathematics, 35, 51-64.
    Usikin, Z. (1997). Doing algebra in grades K-4. Teaching Children Mathematics, 3(6), 346-358.
    Verschaffel, L., Corte, E., & Lasure, S. (1999). Children’s Conception about the Role of Real-World Knowledge in Mathematical Modelling: Analysis and Improvement. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New Perspectives on Conceptual Change (pp. 175-189). New York : Pergamon.

    QR CODE