研究生: |
童士奇 Tung, Shih-Chi |
---|---|
論文名稱: |
探討國中力與壓力單元之科學圖像表徵種類與學生閱讀理解行為及表現 Analyzing how students read and comprehend the graphical inscriptions on the topic of force and pressure in science textbooks at the junior high level |
指導教授: |
楊芳瑩
Yang, Fang-Ying |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 圖像種類 、圖像閱讀 、認知負荷 、科學認識觀 、性別差異 |
英文關鍵詞: | Graphical inscriptions, graphical reading, cognitive load, scientific epistemological beliefs, gender effect |
論文種類: | 學術論文 |
相關次數: | 點閱:266 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的旨在分析現行國中自然與生活科技教科書(力與壓力單元)中的科學圖像表徵種類,及探討科學圖像表徵種類、性別差異、科學認識觀與科學圖像表徵閱讀理解之關係。本研究以已學過此單元之國九學生為研究對象,並使用科學圖像表徵理解問卷、科學認識觀問卷來探討學生對科學圖像表徵之閱讀理解情形。
研究結果發現:(1)科學圖像表徵種類,在功能形式與內容形式方面,分別以表徵圖及景物圖為主;(2)在理解不同種類的科學圖像表徵時,學生對「組織/資料圖」及「表徵/理論模式圖」的閱讀行為及理解的表現是較差的,而「解釋/概念圖」及「表徵/景物圖」的閱讀行為及理解的表現是較好的,故閱讀所需時間、認知負荷及理解表現是相關的;(3)閱讀「組織/資料圖」、「表徵/景物圖」及「表徵/多元表徵圖」的閱讀行為具在性別差異;(4)學生的科學認識觀與閱讀「表徵/關係圖」、「表徵/理論模式圖」、「組織/資料圖」、「解釋/概念圖」、「表徵/概念圖」、「表徵/景物圖」、「表徵/多元表徵圖」時之行為與表現有相關。
關鍵字:圖像種類、圖像閱讀、認知負荷、科學認識觀、性別差異
There are two purposes in this study. One is to analyze the graphical inscriptions in science textbooks at junior high level on the topic of force and pressure. The other is to investigate the relations among the reading performances of graphical inscriptions (in terms of reading time, cognitive load, and comprehension result), gender, and scientific epistemological beliefs.
The participants were 60 ninth grade students who had learned the topic before the study. Research tools included a questionnaire developed by the researcher to assess the reading and comprehension of various graphical inscriptions and cognitive loads, and an existing questionnaire used to assess students’ scientific epistemological beliefs.
Major findings include
(1)Content analysis showed that the main function of graphical inscriptions in junior-high science textbooks was to represent the text content in a concrete way, while the main form of graphic was pictures showing people, real scenes and/or natural phenomena.
(2)In terms of reading time, cognitive load and comprehension, students performed better in reading the “interpreting/ conceptual diagram” (function/form) and “representing / pictures”,” but worse in the “organizing / data table” and “representing / theoretical diagram.”
(3)The gender difference existed in the reading of “representing / pictures” and “representing / complex displays”.
(4)Correlations were found between scientific epistemological beliefs and the reading and comprehension of different graphical inscriptions.
Key words:Graphical inscriptions, graphical reading, cognitive load, scientific epistemological beliefs, gender effect
中文部分
黃幸美. (1995). 數理與科學教育的性別差異之探討. 婦女與兩性學刊(6), 95-135.
英文部分
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436.
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: a critical review of the literature. International Journal of Science Education, 22(7), 665-701.
Benbow, C. P., & Minor, L. L. (1986). Mathematically talented males and females and achievement in the high school sciences. American Educational Research Journal, 23(3), 425-436.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational psychology review, 3(3), 149-210.
Conley, A. M., Pintrich, P. R., Vekiri, I., & Harrison, D. (2004). Changes in epistemological beliefs in elementary science students. Contemporary Educational Psychology, 29(2), 186-204.
Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073-1091.
Edmondson, K. M., & Novak, J. D. (1993). The interplay of scientific epistemological views, learning strategies, and attitudes of college students. Journal of research in science teaching, 30(6), 547-559.
Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low-and high-ability children. Contemporary Educational Psychology, 24(2), 95-123.
Hegarty, M., Carpenter, P. A., & Just, M. A. (1996). Diagrams in the comprehension of scientific texts.
Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Educational psychology review, 13(4), 353-383.
Kizilgunes, B., Tekkaya, C., & Sungur, S. (2009). Modeling the relations among students' epistemological beliefs, motivation, learning approach, and achievement. The Journal of educational research, 102(4), 243-256.
Kragten, M., Admiraal, W., & Rijlaarsdam, G. (2013). Diagrammatic literacy in secondary science education. Research in Science Education, 43(5), 1785-1800.
Kuhn, D. (1991). The skills of argument: Cambridge University Press.
Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of research in science teaching, 29(4), 331-359.
Lee, V. R. (2010). Adaptations and continuities in the use and design of visual representations in US middle school science textbooks. International Journal of Science Education, 32(8), 1099-1126.
Liang, J.-C., Lee, M.-H., & Tsai, C.-C. (2010). The relations between scientific epistemological beliefs and approaches to learning science among science-major undergraduates in Taiwan. The Asia-Pacific Education Researcher, 19(1).
Liang, J. C., & Tsai, C. C. (2010). Relational Analysis of College Science‐Major Students’ Epistemological Beliefs Toward Science and Conceptions of Learning Science. International Journal of Science Education, 32(17), 2273-2289.
Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences (Vol. 1): Stanford University Press.
Mayer, R. E. (2002). Multimedia learning. Psychology of Learning and Motivation, 41, 85-139.
McTigue, E. M. (2009). Does multimedia learning theory extend to middle-school students? Contemporary Educational Psychology, 34(2), 143-153.
McTigue, E. M., & Flowers, A. C. (2011). Science visual literacy: Learners' perceptions and knowledge of diagrams. The Reading Teacher, 64(8), 578-589.
Norman, R. R. (2012). Reading the graphics: what is the relationship between graphical reading processes and student comprehension? Reading and Writing, 25(3), 739-774.
Olafson, L., & Schraw, G. (2006). Teachers’ beliefs and practices within and across domains. International Journal of Educational Research, 45(1), 71-84.
Paas, F. G., & Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational psychology review, 6(4), 351-371.
Paivio, A. (1990). Mental representations: A dual coding approach: Oxford University Press.
Roth, W.-M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of educational research, 68(1), 35-59.
Ryan, A. G., & Aikenhead, G. S. (1992). Students' preconceptions about the epistemology of science. Science Education, 76(6), 559-580.
Sadker, M., Sadker, D., & Klein, S. (1991). The issue of gender in elementary and secondary education. Review of research in education, 269-334.
Schommer, M. (1994). Synthesizing epistemological belief research: Tentative understandings and provocative confusions. Educational psychology review, 6(4), 293-319.
Schraw, G., Olafson, L., & VanderVeldt, M. (2012). Epistemological Development and Learning. Encyclopedia of the Sciences of Learning, 1165-1168.
Slough, S. W., McTigue, E. M., Kim, S., & Jennings, S. K. (2010). Science textbooks' use of graphical representation: A descriptive analysis of four sixth grade science texts. Reading Psychology, 31(3), 301-325.
Songer, N. B., & Linn, M. C. (1991). How do students' views of science influence knowledge integration? Journal of research in science teaching, 28(9), 761-784.
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science?: a critical review. American Psychologist, 60(9), 950.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Tang, K. S. (2013). Out‐of‐School Media Representations of Science and Technology and their Relevance for Engineering Learning. Journal of Engineering Education, 102(1), 51-76.
Tsai, C.-C., Jessie Ho, H. N., Liang, J.-C., & Lin, H.-M. (2011). Scientific epistemic beliefs, conceptions of learning science and self-efficacy of learning science among high school students. Learning and Instruction, 21(6), 757-769.
van Eijck, M., Goedhart, M. J., & Ellermeijer, T. (2011). Polysemy in the domain-specific pedagogical use of graphs in science textbooks: the case of an electrocardiogram. Research in Science Education, 41(1), 1-18.
Vekiri, I. (2002). What is the value of graphical displays in learning? Educational psychology review, 14(3), 261-312.
Yeh, Y. F. Y., & McTigue, E. M. (2009). The frequency, variation, and function of graphical representations within standardized state science tests. School Science and Mathematics, 109(8), 435-449.