簡易檢索 / 詳目顯示

研究生: 莊仁華
Jen-Hua Chuang
論文名稱: mTOR蛋白複合體之訊息傳遞在小鼠胚胎幹細胞分化出之神經細胞中的角色
The role of mTOR complexes signaling pathway in neurons differentiated from mouse embryonic stem cells
指導教授: 林炎壽
Lin, Yenshou
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 116
中文關鍵詞: mTOR蛋白複合體ImTOR蛋白複合體II小鼠胚胎幹細 胞胚胎體雷帕拉霉素
英文關鍵詞: mTORC1, mTORC2, mouse embryonic stem cells, embryonic bodies, rapamycin
論文種類: 學術論文
相關次數: 點閱:140下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經細胞的生長與分化需要許多因子傳遞訊息及相關蛋白快速且大量新合成,以因應如發育過程或環境的刺激。目前有一些訊息傳遞路徑已被報導參與在神經的生長,如CAMKII路徑,又如另一與蛋白轉譯息息相關的一重要因子- mTOR。以細胞腦組織初級培養的實驗證實mTOR的活化有助於長期記憶的形成及神經纖維的突觸可塑性等。然而對於mTOR是否影響由胚胎幹細胞所分化出的神經細胞之生長等則所知甚少。另外,對於近年來所發現mTOR藉由和不同蛋白而組合成不同之蛋白複合體,其中mTOR蛋白複合體II對於神經之生長或型態的作用也是鮮少被探討,因此我們旨在探討mTOR蛋白複合體I與mTOR蛋白複合體II對於由胚胎幹細胞所分化出的神經細胞生長之影響。首先,我們建立小鼠胚胎幹細胞分化成神經的模式,發現新鮮的胰蛋白酶在特定的時間內作用,可以有效地將形成的胚胎體分解成較小的球體,並且得到平均約87%均一性的神經細胞,且這些神經細胞屬於可分泌谷氨酸的興奮性神經元。利用這些神經細胞進而來探討mTOR蛋白複合體I對其生長之影響。先以藥物處理方式給予分化後的神經細胞mTOR蛋白複合體I的抑制劑,0.2μM或1μM雷帕拉霉素(rapamycin),均在處理後第三天明顯導致神經纖維的斷裂與神經細胞的死亡;在分子層級方面,以病毒包裹RNAi感染胚胎幹細胞、以抑制其mTORC1複合體I中raptor基因表達的實驗中發現雖然這些幹細胞仍可形成胚胎體,但體積明顯地比對照組的胚胎體小很多,甚至導致分化失敗。至於mTORC2對於神經細胞所扮演角色之探討,我們以胚胎幹細胞分化成之神經細胞以及小鼠大腦皮質神經元之初級培養細胞二者為模式加以研究。除了研究mTOR蛋白複合體II中專一蛋白rictor之外,之前在rictor基因剃除的胚胎纖維細胞,本實驗室又發現一與rictor有關的蛋白,暫時稱之為RICAP。以免疫沉澱方式已驗證HA-rictor與FLAG-RICAP得以結合,目前亦發現rictor/RICAP對神經的生長極具影響。此等研究了解了mTOR蛋白複合體I及II在小鼠胚胎幹細胞所分化出的神經細胞之重要性,並且於訊息傳遞領域開創了可能之新穎範疇。

    Neuronal growth and differentiation need many signal cues and de novo protein synthesis to convey information in order to respond to various environmental stimulations. Some signal pathways have been demonstrated to participate in the neuronal growth, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cell division cyclin 42 (Cdc 42) pathway. Previous studies suggested that mTOR, mammalian target of rapamycin, is important in the formation of long-term potential (LTP)/long-term depression (LTD) by using animal model or primary neuronal cells. However, much less is known regarding the role of mTOR and its complexes in the neurons differentiated from mouse embryonic stem cells (mESCs). In addition, the upstream regulators, downstream molecules, and roles of mTORC2, a newly identified mTOR complex, are also largely unknown. Hence, we aim to investigate the roles of mTORC1 and mTORC2 in the progression of neuronal growth/morphological change by using neurons differentiated from mESCs. First of all, we established a cellular model in which glutamatergic neurons can be uniformly differentiated from mESCs. We found that applying fresh trypsin/EDTA solution to dissociate embryonic bodies (EBs) in critical timing determines that >87% of cells differentiated into glutamatergic neurons. By employing these neurons, we found that neurites loss as well as soma shrinkage after 0.2μM or 1μM rapamycin treatment for 48 to 72 hr. Likewise, the EBs formation from mESCs infected with raptor shRNAs showed a smaller size, even fail to differentiate into neurons. Interestingly, phosphorylation of ribosomal protein S6 kinase (S6K), but not 4E-binding protein 1(4E-BP1), was decreased in rapamycin- or shRNA- treated neurons. On the other hand, a novel rictor associated protein, named RICAP, is recently revealed in our laboratory through immunoprecipitation (IP) and mass spectrometry analysis. FLAG-RICAP and HA-rictor were demonstrated to be able to associate with each other by using IP. The regulation/ function/ morphology of this complex remains further investigation. Taken together, this study provides a new insight to reveal Mtorc1 dependent mechanism which is involved in neuronal growth. The observation of a difference between S6K and 4E-BP1 in neurons suggests that additional regulation might be involved. Equally important, a groundbreaking research regarding Mtorc2 and its novel partner in neuroscience might shed a light on signal transduction as well.

    Title……………………………………………………………………….i Acknowledgement………………………………………………………..iiChinese abstract..………………………………………………………viii English abstract…………………………………………………………..x Chapter I. General Introduction………………………………………1 1.Growth and importance of neurons…………………………………….2 2. Morphological change of neurons……………………………………..4 3. mTOR (mammalian target of rapamycin) signaling pathways………..7 4. Embryonic stem cells and neuronal differentiation………………….11 Experimental rationale…………………………………………………..15 Chapter II. General Materials and Methods.………………………..16 I) Materials………………………………………………………….17 II) Methods…………………………………………………………..18 1. Feeder-independent mESCs culture…………………………...18 2. Neurons differentiated from mESCs-EB formation…………...18 3. EB dissociation and neuronal differentiation………………….19 4. Primary cortical neurons cultured from mice………………….20 5. Immunocytochemistry of neuronal cells and neurite density Analysis………………………………………………………….21 6.Cell lysates and immunoblot assay…………………………….22 7. Immunoprecipitation…………………………………………...23 8.Treatment of drugs/inhibitors on neurons……………………...24 9.RNAi viral particles preparation……………………………….24 10. Plasmids construction………………………………………….25 III) Statistical analysis………………………………………………..26 Chapter III. An Approach for Differentiating Uniform Glutamatergic Neurons from mESCs………………………………...27 Introduction……………………………………………………………..28 Material and methods…………………………………………………...30 Results…………………………………………………………………..30 Discussion……………………………………………………………….35 Figures…………………………………………………………………..39 Fig. 1. Flow chart of experimental procedures to differentiate mESCs into neurons…………………………………………….40 Fig. 2. Effects of different timing of EBs trypsinization on neuronal differentiation…………………………………………42 Fig. 3. Heterogeneous neuronal differentiation after trypsinization of whole EBs……………………………………………………44 Fig. 4. Uniform neurons differentiated from mESCs…………...46 Fig. 5. Morphological and biochemical evidence showing that uniform neurons had differentiated from mESCs………………48 Fig. 6. Glutamatergic neurons were differentiated from mESCs.50 Fig. 7. Almost uniform neurons differentiated from mESCs show glutamatergic, pre-, and post-synapse markers…………………52 Chapter IV. mTOR Complex I is Essential for Growth and Differentiation of Neurons Derived from mESCs ...............................53 Introduction……………………………………………………………..54 Material and methods…………………………………………………...56 Results…………………………………………………………………..56 Discussion……………………………………………………………….61 Figures…………………………………………………………………..64 Fig. 8. Raptor knockdown in mESCs retards EB formation and causes failure to differentiate into neurons……………………..66 Fig. 9. mTORC1/rapamycin regulates neuronal differentiation and neurite growth in neurons derived from mESCs………………..68 Fig. 10. Rapamycin-induced neurites loss accompanied with caspase-3 activation……………………………………………..70 Fig. 11. Knockdown of raptor in neurons differentiated from normal mESCs impedes morphology of neurites……………….73 Fig. 12. HEK293T cells transfected with pLMG-S6KT389E could be resistant to rapamycin treatment……………………………..76 Chapter V. The Role of RICAP/mTORC2 in Neurons……….……77 Introduction……………………………………………………………..78 Material and methods…………………………………………………...81 Results…………………………………………………………………..81 Discussion……………………………………………………………….83 Figures…………………………………………………………………..85 Fig 13. RICAP exhibited as an associated partner of rictor obviously in overexpressed model……………………………...86 Fig. 14. Neurites gradually loss in primary cortex neuronal cells infected with RICAP RNAi…………………………………….88 Chapter VI. General Discussion………………………………………89 Chapter VII. References………………………………………………94 Appendix……………………………………………….......................113

    Abranches E, Silva M, Pradier L, Schulz H, Hummel O, Henrique D, Bekman E (2009) Neural Differentiation of Embryonic Stem Cells In Vitro: A Road Map to Neurogenesis in the Embryo. PLoS ONE 4:e6286.
    Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172-178.
    Andersen SS, Bi GQ (2000) Axon formation: a molecular model for the generation of neuronal polarity. Bioessays 22:172-179.
    Appenzeller-Herzog C, Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22:274-282.
    Arimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194-205.
    Atkins CM, Nozaki N, Shigeri Y, Soderling TR (2004) Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J Neurosci 24:5193-5201.
    Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342-357.
    Ban J, Bonifazi P, Pinato G, Broccard FD, Studer L, Torre V, Ruaro ME (2007) Embryonic stem cell-derived neurons form functional networks in vitro. Stem Cells 25:738-749.
    Bateman JM, McNeill H (2004) Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119:87-96.
    Beaulieu JM, Gainetdinov RR, Caron MG (2009) Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 49:327-347.
    Bibel M, Richter J, Lacroix E, Barde YA (2007) Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells. Nat Protoc 2:1034-1043.
    Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, Goetz M, Barde YA (2004) Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat Neurosci 7:1003-1009.
    Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225-227.
    Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947-956.
    Bradke F, Dotti CG (2000) Differentiated neurons retain the capacity to generate axons from dendrites. Current Biology 10:1467-1470.
    Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8:776-789.
    Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat Protoc 2:1490-1498.
    Burdon T, Smith A, Savatier P (2002) Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 12:432-438.
    Carson RP, Fu C, Winzenburger P, Ess KC (2013) Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum Mol Genet 22:140-152.
    Chan YS, Yang L, Ng HH (2011) Transcriptional regulatory networks in embryonic stem cells. Prog Drug Res 67:239-252.
    Chano T, Okabe H, Hulette CM (2007) RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer's diseases. Brain Res 7:97-105.
    Chipman PH, Toma JS, Rafuse VF (2012) Generation of motor neurons from pluripotent stem cells. Prog Brain Res 201:313-331.
    Choi YJ, Di Nardo A, Kramvis I, Meikle L, Kwiatkowski DJ, Sahin M, He X (2008) Tuberous sclerosis complex proteins control axon formation. Genes Dev 22:2485-2495.
    Chuang JH, Tung LC, Lee-Chen GJ, Yin Y, Lin Y (2011) An approach for differentiating uniform glutamatergic neurons from mouse embryonic stem cells. Anal Biochem 410:149-151.
    Cid-Arregui A, De Hoop M, Dotti CG (1995) Mechanisms of neuronal polarity. Neurobiol Aging 16:239-243.
    Cook A, Hippensteel R, Shimizu S, Nicolai J, Fatatis A, Meucci O (2010) Interactions between chemokines: regulation of fractalkine/CX3CL1 homeostasis by SDF/CXCL12 in cortical neurons. J Biol Chem 285:10563-10571.
    Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312:927-930.
    Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744-755.
    Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91:555-602.
    Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454-1468.
    Doyle M, Kiebler MA (2011) Mechanisms of dendritic mRNA transport and its role in synaptic tagging. Embo J 30:3540-3552.
    Du Q, Guan Y, Ji H, Chen Z, Zhang YA (2011) Effect of monolayer cells on sphere cells--two types of cells that emerge during the neural differentiation of mouse embryonic stem cells. Neurosci Lett 504:285-289.
    Eguchi S, Tokunaga C, Hidayat S, Oshiro N, Yoshino K, Kikkawa U, Yonezawa K (2006) Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells 11:757-766.
    Ekim B, Magnuson B, Acosta-Jaquez HA, Keller JA, Feener EP, Fingar DC (2011) mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol Cell Biol 31:2787-2801.
    Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148-165.
    Erceg S, Ronaghi M, Stojkovic M (2009) Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 27:78-87.
    Facchinetti V, Ouyang W, Wei H, Soto N, Lazorchak A, Gould C, Lowry C, Newton AC, Mao Y, Miao RQ, Sessa WC, Qin J, Zhang P, Su B, Jacinto E (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. Embo J 27:1932-1943.
    Fingar DC, Blenis J (2004) Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151-3171.
    Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472-1487.
    Fraichard A, Chassande O, Bilbaut G, Dehay C, Savatier P, Samarut J (1995) In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 108:3181-3188.
    Fremeau RT, Jr., Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27:98-103.
    Frey S, Frey JU (2008) 'Synaptic tagging' and 'cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog Brain Res 169:117-143.
    Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67:3089-3099.
    Garelick MG, Kennedy BK (2011) TOR on the brain. Exp Gerontol 46:155-163.
    Goulburn AL, Stanley EG, Elefanty AG, Anderson SA (2012) Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res 8:416-426.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9-22.
    Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J, Brown M, Fitzgerald KJ, Sabatini DM (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859-871.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177-189.
    Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393-2409.
    Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926-1945.
    Hergovich A, Stegert MR, Schmitz D, Hemmings BA (2006) NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7:253-264.
    Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33:67-75.
    Hogan C, Serpente N, Cogram P, Hosking CR, Bialucha CU, Feller SM, Braga VM, Birchmeier W, Fujita Y (2004) Rap1 regulates the formation of E-cadherin-based cell-cell contacts. Mol Cell Biol 24:6690-6700.
    Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24:6352-6361.
    Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, Krnjevic K, Roman G, Costa-Mattioli M (2013) mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 16:441-448.
    Hubbard KS, Gut IM, Lyman ME, Tuznik KM, Mesngon MT, McNutt PM (2012) High yield derivation of enriched glutamatergic neurons from suspension-cultured mouse ESCs for neurotoxicology research. BMC Neurosci 13:127.
    Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M, Kaibuchi K (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4:781-782.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122-1128.
    Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410:19-37.
    Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300-11312.
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163-175.
    Koike-Kumagai M, Yasunaga K-i, Morikawa R, Kanamori T, Emoto K (2009) The target of rapamycin complex 2 controls dendritic tiling of Drosophila sensory neurons through the Tricornered kinase signalling pathway. Embo J 28:3879-3892.
    Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S, Hashimoto N (2008) Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 86:270-280.
    Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480:547-551.
    Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25:11288-11299.
    Lagasse E, Clerc RG (1988) Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation. Mol Cell Biol 8:2402-2410.
    Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86:1151-1178.
    Lang F, Strutz-Seebohm N, Seebohm G, Lang UE (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588:3349-3354.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274-293.
    Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, Sonenberg N (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117:387-396.
    Leahy A, Xiong JW, Kuhnert F, Stuhlmann H (1999) Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 284:67-81.
    Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675-679.
    Li M, Pevny L, Lovell-Badge R, Smith A (1998) Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 8:971-974.
    Lin AC, Holt CE (2007) Local translation and directional steering in axons. Embo J 26:3729-3736.
    Lin Y, Khokhlatchev A, Figeys D, Avruch J (2002) Death-associated protein 4 binds MST1 and augments MST1-induced apoptosis. J Biol Chem 277:47991-48001.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713.
    Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601-635.
    Magnuson B, Ekim B, Fingar DC (2012) Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks. Biochem J 441:1-21.
    Mainwaring LA, Kenney AM (2011) Divergent functions for eIF4E and S6 kinase by sonic hedgehog mitogenic signaling in the developing cerebellum. Oncogene 30:1784-1797.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634-7638.
    Morita T, Sobue K (2009) Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR-p70S6K pathway. J Biol Chem 284:27734-27745.
    Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S (2004) mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol 24:6710-6718.
    Neufeld TP, Edgar BA (1998) Connections between growth and the cell cycle. Curr Opin Cell Biol 10:784-790.
    Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379-391.
    Nishimura I, Mori K, Matsusue Y, Okabe H, Chano T (2011) Balance between S6K-S6 and 4E-BP1 depends on ERK activity in developing neurons. . Curr Signal Transduc Ther 6:82-87. Nishimura T, Yamaguchi T, Kato K, Yoshizawa M, Nabeshima Y, Ohno S, Hoshino M, Kaibuchi K (2005) PAR-6-PAR-3 mediates Cdc42-induced Rac activation through the Rac GEFs STEF/Tiam1. Nat Cell Biol 7:270-277.
    Niwa H, Burdon T, Chambers I, Smith A (1998) Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12:2048-2060.
    Oh WJ, Wu Cc, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29:3939-3951.
    Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463-472.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353-365.
    Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-Brustel Y, Klumperman J, Thorens B, Thomas G (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408:994-997.
    Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, Mueller M, Fumagalli S, Kozma SC, Thomas G (2004) S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24:3112-3124.
    Pierce JP, Mayer T, McCarthy JB (2001) Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr Biol 11:351-355.
    Plachta N, Annaheim C, Bissiere S, Lin S, Ruegg M, Hoving S, Muller D, Poirier F, Bibel M, Barde YA (2007) Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat Neurosci 10:712-719.
    Pullen N, Thomas G (1997) The modular phosphorylation and activation of p70s6k. FEBS Letters 410:78-82.
    Rathjen PD, Toth S, Willis A, Heath JK, Smith AG (1990) Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell 62:1105-1114.
    Richter JD, Klann E (2009) Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev 23:1-11.
    Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH, Berns A, te Riele H (1998) p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 12:1599-1609.
    Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190-202.
    Rozansky DJ, Wang J, Doan N, Purdy T, Faulk T, Bhargava A, Dawson K, Pearce D (2002) Hypotonic induction of SGK1 and Na+ transport in A6 cells. Am J Physiol Renal Physiol 283:F105-113.
    Russell RC, Fang C, Guan KL (2011) An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 138:3343-3356.
    Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342-348.
    Sachlos E, Auguste DT (2008) Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29:4471-4480.
    Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296-1302.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159-168.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098-1101.
    Savatier P, Huang S, Szekely L, Wiman KG, Samarut J (1994) Contrasting patterns of retinoblastoma protein expression in mouse embryonic stem cells and embryonic fibroblasts. Oncogene 9:809-818.
    Savatier P, Lapillonne H, van Grunsven LA, Rudkin BB, Samarut J (1996) Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent
    kinase inhibitors in mouse embryonic stem cells. Oncogene 12:309-322.
    Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16-22.
    Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797-806.
    Shan J, Munro TP, Barbarese E, Carson JH, Smith R (2003) A molecular mechanism for mRNA trafficking in neuronal dendrites. J Neurosci 23:8859-8866.
    Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC (1998) Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase. Embo J 17:6649-6659.
    Shiota C, Woo JT, Lindner J, Shelton KD, Magnuson MA (2006) Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell 11:583-589.
    Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140:421-435.
    Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, Shiota C, Kennedy JP, Lindsley CW, Daws LC, Polley DB, Veenstra-Vanderweele J, Stanwood GD, Magnuson MA, Niswender KD, Galli A (2010) Dysregulation of the Norepinephrine Transporter Sustains Cortical Hypodopaminergia
    and Schizophrenia-Like Behaviors in Neuronal Rictor Null Mice. PLoS Biol 8:e1000393.
    Stavridis MP, Smith AG (2003) Neural differentiation of mouse embryonic stem cells. Biochem Soc Trans 31:45-49.
    Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132:2093-2102.
    Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H (1999) PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 96:6199-6204.
    Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99:467-472.
    Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727-1734.
    Thomanetz V, Angliker N, Cloetta D, Lustenberger RM, Schweighauser M, Oliveri F, Suzuki N, Ruegg MA (2013) Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J Cell Biol 201:293-308.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109-113.
    Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200-205.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316-323.
    Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Prog Neurobiol 49:185-214.
    Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. Embo J 20:4370-4379.
    Wang X, Proud CG (2011) mTORC1 signaling: what we still don't know. J Mol Cell Biol 3:206-220.
    Weston MC, Chen H, Swann JW (2012) Multiple roles for Mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci 32:11441-11452.
    Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385-397.
    Wu GY, Deisseroth K, Tsien RW (2001) Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci 4:151-158.
    Wu L, Wells D, Tay J, Mendis D, Abbott MA, Barnitt A, Quinlan E, Heynen A, Fallon JR, Richter JD (1998) CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 21:1129-1139.
    Wu Q, Zhang Y, Xu J, Shen P (2005) Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci U S A 102:13289-13294.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471-484.
    Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712-2724.
    Zinzalla V, Stracka D, Oppliger W, Hall Michael N (2011) Activation of mTORC2 by Association with the Ribosome. Cell 144:757-

    下載圖示
    QR CODE