研究生: |
周淑娥 Chow Shu Er |
---|---|
論文名稱: |
氧化態低密度脂蛋白對血管內皮細胞生理的研究 Effects of Oxidized LDL on Vascular Endothelial Cell Physiology |
指導教授: |
施河
Shi, He 陳君侃 Chen, Jan-Kan |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 氧化態低密度脂蛋白 、血管內皮細胞 、細胞膜波浪狀 、胞飲作用 、Ras prenylation 、HMG-CoA reductase |
英文關鍵詞: | oxidized LDL, vascular endothelial cell, membrane ruffling, pinocytosis, Ras prenylation, HMG-CoA reductase |
論文種類: | 學術論文 |
相關次數: | 點閱:341 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
已知氧化態低密度脂蛋白(oxidized low density lipoprotein; ox-LDL) 在動脈粥狀硬化病症中扮演很重要角色,惟有關LDL (low density lipoprotein)如何進入內皮下層促成LDL的堆積、氧化,還有ox-LDL對於血管內皮細胞的生長抑制機制則仍待探究,本論文乃就以上兩主題提出研究報告。
首先以人的LDL於抗氧化劑存在下製備,然後以銅離子氧化成不同程度,以來比較未氧化LDL和氧化態LDL 對血管內皮細胞(EC)形成壓力纖維( stress fiber)、 細胞膜波浪狀和胞飲能力的變化。研究顯示在濃度 100至 200 ug cholesterol per ml protein時,不論未氧化LDL和氧化LDL都會促使EC拉長和產生壓力纖維, 惟後者比較之明顯;此外, ox-LDL也誘導 EC 細胞膜產生波浪狀和增加胞飲能力,且與LDL氧化程度和ox-LDL劑量相關。若以抗氧化劑先處理EC,則抑制 ox-LDL誘導 EC 細胞膜產生波浪狀和增加胞飲的能力,卻不能抑制壓力纖維的形成。至於以未氧化LDL處理之EC雖也增加胞飲能力,但所需劑量較高,顯然不同於處理ox-LDL者之表現,惟促進胞飲作用並未伴隨細胞膜波浪狀的產生, 因此LDL和ox-LDL的這些作用,可能是經由不同機制產生,但皆能提高胞飲活性,增加內皮層的穿透細胞能力,導致血漿的成份(如LDL)流入內皮層下腔。
其次,為了了解ox-LDL抑制 EC生長之機制,本研究進一步檢視ox-LDL處理細胞Ras訊息路徑被干擾的情形。結果顯示 EC經 ox-LDL處理會導致細胞全部的 Ras蛋白質和細胞膜上的 Ras蛋白質明顯的下降,後者並與下降43% 的 HMG-CoA reductase活性符合;EC經 ox-LDL處理後,以Northern blot分析其 Ras mRNA的穩定性並無明顯改變;此結果顯示ox-LDL處理後,可能會造成EC的Ras蛋白質拋錨於細胞膜上的量減少到不足,使其不能傳導bFGF的刺激細胞分裂訊息,由於這種作用可被血清蛋白混合氧化態膽固醇的複合物所模擬,所以ox-LDL抑制EC Ras farnesylation的作用,可能源自於ox-LDL本身所含的氧化態固醇類成份。
ABSTRACT
Oxidized low density lipoprotein (ox-LDL) has thus been considered to be a major culprit that induces activation, or dysfunction of the endothelial cells associated with the initiation of the atherosclerotic lesions. The alterations of the structural and/or functional integrity of the endothelial barrier allowed a net influx of lipoproteins from the circulating plasma into the subendothelium. The mechanisms underlying the observed endothelial dysfunction elicited by ox-LDL have not been completely elucidated. In this study, how hypercholesterolemia promoted subendothelial LDL retention/oxidation and the mechanism underlying the antiproliferative effect of ox-LDL on vascular EC have been detected.
Human LDLwas prepared in the presence of antioxidants and was oxidized to different levels (measured by thiobarbituric acid reactive substance) with copper ion. The effects of unoxidized LDL and oxidized-LDL (ox-LDL) on stress fiber formation, cell membrane ruffling and pinocytosis (measured by [14C]-sucrose uptake) in cultured human umbilical cord vein endothelial cells (EC) were compared. We showed that at a concentration range of 100 to 200 ug cholesterol per ml, both unoxidized LDL and ox-LDL promoted EC elongation and stress fiber formation, however, the effect by the latter was more prominent when compared at the same dose range. In addition, ox-LDL also induced EC membrane ruffling and promoted pinocytosis. These effects were positively correlated with the extents of LDL oxidation and was dose dependent on ox-LDL. Ox-LDL- promoted membrane ruffling and pinocytosis were effectively blocked by brief preexposure of the cells to antioxidants. In contrast, the stress fiber formation was not affected by antioxidant pretreatment. Although native LDL also promoted [14C]-sucrose uptake, it was less potent than ox-LDL and required significantly higher concentrations to see the effect. Unlike ox-LDL, native LDL-enhanced pinocytosis was not accompanied with the appearance of membrane ruffling, it was, therefore, suggested that they might act via different mechanisms. Elevated pinocytosis might increase the transcytotic activity of the endothelium leading to an increased influx of plasma components, i.e., LDL, into the subendothelial space.
To understand the mechanisms ox-LDL exposure reversibly inhibited EC growth, we examined the possible interference of Ras signaling pathway in ox-LDL treated cells. By immunoprecipitation and Western blot analysis, we showed that exposure of EC to ox-LDL resulted in a marked reduction of total cellular Ras and membrane-associated Ras proteins. Reduction of membrane-associated Ras proteins was coincided with a 43% decrease in HMG-CoA reductase activity as determined by the conversion of [14C]HMG-CoA to [14C]mevalonate. Meanwhile, the steady-state levels of all three Ras mRNA species were not significantly changed as measured by Northern blot analysis. The reduction of Ras membrane anchoring was correlated with a retarded cell growth in serum and an impaired cell response to bFGF mitogenesis. The results suggested that in ox-LDL exposed EC, Ras farnesylation and its subsequent membrane anchoring might be reduced to an extent that it was no longer adequate (in amount) to convey the bFGF mitogenesis. Ox-LDL effect was due to its oxsterol content as these effects were mimicked by bovine serum albumin complexed oxycholesterols.
參考文獻
1. Brown, M. S., and Goldstein, J. L. (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Ann. Rev. Biochem. 52, 223-261.
2. Witztum, J. L. (1994) The oxidation hypothesis of atherosclerosis. Lancet. 344, 793-795.
3. Smith, C., Mitchinson, M. J., Aruoma, O. I., and Halliwell, B. (1992) Stimulation of lipid peroxidation and hydroxyl-radical generation by the contents of human atherosclerotic lesions. Biochem. J. 286, 901-905.
4. Esterbauer, H., Jurgens, G., Quehenberger, Q., and Kolber, E. (1987) Autooxidation of human LDL: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J. Lipid Res. 28, 495-509.
5. Holvoet, P., and Collen, D. (1994) Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J. 8, 1279-1284.
6. Steinberg, D., Parthasarthy, S., Carew, T.E., Khoo, J.C., and Witzum, J.I. (1989) Beyond cholesterol--- Modification of low density lipoprotein that increase its atherogenicity. New Engl. J. Med. 320, 915-924.
7. Steinberg, D. (1997) Oxidative modification of LDL and atherogenesis. Circulation. 95, 1062-1071.
8. Esterbauer, H., Gebicki, J., Pyhl, H., and Jurgen, G. (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radi Biol Med. 13, 341-190.
9. Chow, S. E., Lee, R. S., Shih, S.H., and Chen, J. K. (1998) Oxidized LDL promotes vascular endothelial cell pinocytosis via a prooxidation mechanism. FASEB J. 12, 823-830.
10. Frankel, E. N., Waterhouse, A. L., and Kinsella, J. E. (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341, 1103-1104.
11. Fuhrman, B., Lavy, A., and Aviram, M. (1995) Consumption of red wine with meals reduces the susceptibility of human plasma and LDL to lipid peroxidation. Am J. Clinical Nutr. 61, 549-554.
12. Kushi, L. H., Folsom, A. R., Prineas, R. J., Mink, P. J., Wu, Y., and Bostick, R. M. (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. New England J. Med. 334, 1156-1162.
13. Aucier, S. E., Kandutsch, A. A., Gayen, A. K., and Spencer, T. A. (1989) Oxysterol regulators of 3-hydroxy-3-methylglutaryl-CoA reductase in liver. Effect of dietary cholesterol. J. Biol. Chem. 262, 6863-6869.
14. Goldstein, J. L., and Brown, M. S. (1990) Regulation of the mevalonate pathway Nature 343, 425 -430.
15. Rudney, H., and Sexton, R. C. (1986) Regulation of cholesterol biosynthesis. Ann. Rev. Nutr. 6, 245-272.
16. Sinenky, M., Beck, L. A., Leonard, S., and Evans, R. (1990) Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J. Biol. Chem. 265, 19937-19941.
17. Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1989) p21ras is modified by a farnesyl isoprenoid. Proc. Natl. Acad. Sci. USA, 86, 8323-8327.
18. Kato, K., Cox, A. D., Hisaka, M. M., Graham, S. M., Buss, J. E., and Der, C. J. (1992) Isoprenoid addition to Ras protein is the critical modification for its membrane association and transformating activity. Proc. Natl. Acad. Sci. USA. 89, 6403-6407.
19. Ross, R. (1993) The pathogenesis of atherosclerosis: a perspective for the 1990S. Science 362, 801-809.
20. Steinbrecher, U. P., Zhang, H. F., and Longheed, M. (1990) Role of oxidatively modified LDL in atherosclerosis. Free Radic Biol Med 9, 155-168.
21. Berliner, J. A., Territo, M. C., Sevanian, A., Ramin, S., Kim, J. A., Bamshad, B., Esterson, M., and Fogelmann, A. M. (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J. Clin. Jnvest. 85, 1260-1266.
22. Joris, I., Zand, T., Nunnarl, J. J., Krolikowski, F. J., and Majno, G. (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion of mononuclear cells in the aorta of hypercholesterolemic rats. Am. J. pathol. 113, 341-358.
23. Carlos, T. .M., and Harlan, J. .M. (1990) Membrane proteins involved in phagocyte adherence to endothelium. Immunol. Rev. 114, 5-28.
24. Lehr, H. A., Becher, M., Marklund, S. L., Hubner, C., Arfors, K. E., Kohlschutter, A., and Messmer, K. (1992) Superoxide-dependent stimulation of leukocyte adhesion by oxidatively modified LDL in vivo. Arterioscler. Thromb. 12, 824-829.
25. Rajavashisth, T. B., Andalibi, A., Territo, M. C., Berliner, J. A., Nava, M., Fogelman, A. M., and Lusis, A. J. (1990) Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344, 254-257.
26. Ishibash, S., Inaba, T., Shimano, H., Harada, K., Inoue, I., Mokuno, H., Mori, N., Gotoda, T., Takaku, F., and Yamada, N. (1990) Monocyte colony-stimulating factor enhances uptake and degradation of acetylated low density lipoproteins and cholesterol esterification in human monocyte-derived macrophages. J. Biol. Chem. 265, 14109-14117.
27. Russell. R. (1997) Cellular and molecular studies of atherogenesis. Atherosclerosis 131, S3-S4.
28. Linder, V., Lappi, D. A., Baird, A., Majack, R. A., and Reidy, M. A. (1991) Role of basic fibroblast growth factor in vascular lesion formation. Circ. Res. 68,106-113.
29. Chin, J. H., Azhar, S., and Hoffman, B. B. (1992) Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J. Clin. Invest. 89,10-18.
30. Boulanger, C. M., Tanner, F. C., Bea, M. L., Hahn, A. W., Werner, A., and Luscher, T. F. (1992) Oxidized low density lipoproteins induced mRNA expression and release of endothelin from human and procine endothelium. Circ. Res. 70, 1191-1197.
31. Armstrong, D. A. (1992) Oxidized LDL steroid, and prostaglandin metabolism in human atherosclerosis. Med. Hypotheses 38, 244-248.
32. Hamsten, A., de Faire, U., Walldius, G., Dahlen, G., Szamosi, A., Landau, C., Blomback, M., and Wiman, B. (1987) Plasminogen activator inhibitor in plasma: risk facot for recurrent myocardial infarction. Lancet 2, 3-9.
33. Weisser, B., Locher, R., Menfden, T., and Vetter, W. (1992) Oxidation of low density lipoprotein enhances its potential to increase intracellular free calcium concentration in vascular smooth muscle cells. Arterioscler Thromb. 12, 231-236.
34. Stiko-Rahm, A., Hultgardh-Nilsson, A., Regnstom, J., Hamsten, A., and Nilsson, J. Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler. Thromb. 12, 1099-1109.
35. Hughes, D. A., Townsend, P. J., and Haslam, P. L. (1992) Enhancement of the antigen-presenting function of monocytes by cholesterol: possible relevance to inflammatory mechanisms in extrinsic allergic alveolitis and atherosclerosis. Clin. Exp. Immunol. 87, 279-286.
36. Halliwell, B. (1988) Albumin - an important extracellular antioxidant? Biochem Pharmacol. 375, 569-571.
37. Zawadzki, Z., Milne, R. W., and Marcel, Y. L. (1991) Cu-(+)-mediated oxidation of dialyzed plasma: effects on low and high density lipoproteins and cholesteryl ester transfer protein. J Lipid Res. 32, 243-250.
38. Kalant, N., and McCormick, S. (1992) Inhibition by serum components of oxidation and collagen-binding of low density lipoprotein. Biochem Biophys Acta. 1128, 211-219.
39. Thomas, C. E. (1992) The influence of medium components in Cu(2+)-dependent oxidation of low-density lipoprotein and its sensitivity to superoxide dismutase. Biochim Biophys Acta. 1128, 20-27.
40. Wagner, J. R., Motchnik, P. A., Stocker, R., Sies, H., and Ames, B. N.(1993) The oxidation of blood plasma and low density lipoprotein components by chemically generated singlet oxygen. J Biol Chem. 268, 18502-18506.
41. van Berkel, T. J., DeRijke, Y. B., and Kruijt, J. K. (1991) Different fate in vivo of oxidatively modified low density lipoprotein in rats: recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem. 266, 2282-2289.
42. deRijke, Y. B., Jurgens, G., Hessels, E. M., Hermann, A., and van Berkel, T. J. (1992) In vivo fate and scavenger receptor recognition of oxidized lipoprotein[a] isoforms in rats. J Lipid Res. 33, 1315-1325.
43. Nievelstein, F., Fogelman, A. M., Mottino, G., and Frank, J. S. (1994) Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein: A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb. 11, 1795-1805.
44. Schwenke, D. C., and Carew, T. E. (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits, II: selective retention of LDL vs: selective increases In LDL permeability in susceptible sited of arteries. Arteriosclerosis. 9, 908-918.
45. Juul, K., Nielsen, L. B., Munkholm, K., Stender, S., and Nordestgaard, B. G. (1996) Oxidation of plasma low-density lipoprotein is accelerates its accumulation and degradation in the arterial wall in vivo. Circulation. 94, 1698-1704.
46. Heinecke, J. W., Baker, L., Rosen, H., and Chait, H. (1986) Superoxide-mediated modification of low density lipoproteins by arterial smooth muscle cells. J. Clin Invest 77, 757-761.
47. Heinecke, J. W., Kawamura, M., Suzuki, L., and Chait, A. (1993) Oxidation of low density lipoproteins by thiols: superoxide dependent and independent mechanisms. J. Lipid Res. 34, 2051-2061.
48. Minor, R. L., Myers, P. R., Guerra, R., Bates, J. N., and Harrison, D. G. Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J. Clin Invest. 86:2109-2116.
49. Yla-Herttuala, S., Rosenfeld, M. E., Parthasarathy, S., Glass, C. K., Sigal, E., Witztum, J. L., and Steinberg, D. (1989) Co-localization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc Natl. Acad. Sci. USA 86, 1046-1050.
50. McNally, A. K., Chisolm, G. M., Morel, D. W., and Catchcart, M. K. (1990) Activated human monocytes oxidized low-density lipoprotein by a lipoxygenase-dependent pathway. J. Immu. 145:254-259.
51. Rankin, S. M., Parthasarathy, S., and Steinberg, D. (1991) Evidence of a dominant role of lipoxygenase in the oxidation of LDL by mouse peritoneal macrophages. J. Lipid Res 32, 449-456.
52. Rimm, E. B., Stampfer, M. J., Ascherio, A., Giovannucci, E., Colditz, G. A., and Willett, W. C. (1993) Vitamin E consumption and the risk of coronary heart disease in men. New Engl J Med 328, 1450-1456.
53. Stampfer, M. J., Hennekens, C. H., Manson, J. E., Colditz, G. A., Rosner, B., and Willett, W. C. (1993) Vitamin E consumption and the risk of coronary disease in women. New Engl J Med 328, 1444-1449.
54. Kao, C. H., Chen, J. K., and Yang, V. C. (1994) Ultrastructure and permeability of endothelial cells in branched regions of rat arteries. Atherosclerosis 105, 97-114.
55. Kao, C. H., Chen, J. K. Kuo, J. S., and Yang, V. C. (1995) Visualization of the transport pathways of LDL across the endothelial cells in the branched regions of rat arteries. Atherosclerosis 116, 27-41.
56. Holland, J.A., Pritchard K.A., Rogers, N.J., and Stemerman, M.B. (1992) Atherogenic levels of low density lipoprotein increase endocytotic activity in cultured human endothelial cells. Am. J. Pathol. 140, 551-558.
57. Rangaswamy, S., Penn M. S., Saidel, G. M., and Chisolm, G. M. (1997) Exogenous oxidized low density lipoprotein injures and alters the barrier function of endothelium in rats in vivo. Circ. Res. 80, 37-44.
58. Woolf, N. (1982) Endothelial alternations in atherogenesis. In pathology of Atherosclerosis (Woolf, N., ed) pp. 261-285, Butterworth and Company, London.
59. Suzuke, Y. J. Forman, H. J., and Sevanian, A. (1997) Oxidants as stimulators of signal transduction. Free Radical Biol and Med. 22, 269-285.
60. Sun, Y., and Oberley, L. W. (1996) Redox regulation of transcriptional facotrs. Free Radical Biol and Med. 21, 335-348.
61. Hainaut, P., and Milner, J.(1993) Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res. 53, 4469-4473
62. Hainaut, P., Rolley, N., Davies, M., and Milner, J. (1995) Modulation by copper of p53 conformation and sequence-specific DNA binding: Role for Cu(II)/Cu(I) redox mechanism. Oncogene 10, 27-32.
63. Meyer, M., Pahl, H. L., and Baeuerle, P. A. (1994) Regulation of the transcription factors NF-kB and Ap-1 by redox changes. Chem. Biol. Interact. 91, 91-100.
64. Abate, C., Luk, D., Gentz, R., Rauscher, F. J. III, and Currran, T. (1990) Expression and purification of the leucine zipper and DNA-binding domains of Fos and Jun: both Fos and Jun contact DNA directly. Proc. Natl Acad. Sci. USA 87, 1032-1036.
65. Abate, C., Patel, L., Rauscher, F. J. III., and Curran, T. (1990) Redox regulation of Fos and Jun DNA-binding activity in vitro. Science 249, 1157-1161.
66. Toledano, M. B., and Leonard, W. J. (1991) Modulation of transcription factor NF-kB binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. USA 88, 4328-4332
67. Glter, D., Mihm, S., and Droge, W. (1994) Distinct effects of glutathione disulphide on the nuclear transcription factor kB and the activator protein-1. Eur. J. Biochem. 221, 639-648 .
68. Bannister, A. J., Cook, A., and Kouzarides, T. (1991) In vitro DNA binding activity of Fos/Jun and BZLF1 but nir C/EBP is affect by redox changes. Oncogene 6, 1243-1250.
69. Meyer, M., Schreck, R., and Baeuerle, P. A. (1993) H2O2 and antioxidants have opposite effects on activation of NF-kB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12, 2005-2015.
70. Cominacini, L., Garbin, U., Pasini, A. F., Davoli, A., Campagnola, M., Contessi, A. M., and Lo Cascio, V. (1997) Antioxidants inhibit the expression of ICAM-1 and VCAM-1 induced by ox-LDL on human umbilical vein endothelial cells. Free Radical Biol and Med. 22, 117-127.
71. Tran, K., and Chan, A. C. (1990) Alpha-tocopherol potentiated prostacyclin release in human endothelial cells. Evidence for structural specificity of the tocopherol molecule. Biochimica et Biophysica 1043, 189-197.
72. Hamelin, S. S., and Chan, A. C. (1983) Modulation of platelet thromboxane and malonalldehyde by dietary vitamin E and linoleate. Lipids 18, 267-269.
73. Chan, A. C., and Leith, M. E. (1981) Decreased prostacyclin synthesis in vitamin E-deficient rabbit aorta. Am J. Clin Nutr 34, 2341-2347.
74. Karpen, C. W., Merola, A. J., Trewyn, R. W., Cornwell, D. G., and Panganamala, R. V. (1981) Modulation of platelet thromboxane A2 and arterial prostacyclin by dietary vitamin E. Prostaglandins 22, 651-661.
75. Rao, K. N. (1995) The significance of the cholesterol biosynthetic pathway in cell growth and carcinogenesis. Anticancer Res. 15, 309-314.
76. Colles, S. M., Irwin, K. C., and Chisolm, G. M. (1996) Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7b-hydroperoxycholesterol. J Lipid Res. 37, 2018-2028.
77. Dalton, M. B., Fantle, K. S., Bechtold, H. A., DeMaio, L., Evans, R. M., Krystosek, A., and Sinensky, M. (1995) The farnesyl protein transferase inhibitor BZA-5B blocks farnesylation of nuclear lamins and p21ras but does not affect their function or localization. Cancer Res. 55, 3295-3304.
78. Cuthbert, J. A., and Lipsky, P. E. (1995) Suppression of the proliferation of ras-transformed cells by fluoromevalonate, an inhibitor of mevalonate metabolism. Cancer Res. 55, 1732-1740.
79. Salonen, J. T., Nyyssonen, K., Salonen R., Porkkala-Sarataho E., Tuomainen, T.-P., Diczfalusy, U., and Bjorkhem, I. (1997) Lipoprotein oxidation and progression of cartoid atherosclerosis. Circulation. 95, 840-845.
80. Bar-Sagi, D., and Feramisco, J.R. (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science. 233, 1061-1068.
81. Kotani, K., Hara, K., Kotani, K., Yonezawa, K., and Kasuga, M. (1995) Phosphoinositide 3-kinase as an upstream regulator of the small GTP-binding protein Rac in the insulin signaling of membrane ruffling. Biochem. Biophys. Res. Commun. 208, 985-990.
82. Ridely, A. J., Comoglio, P. M., and Hall, A. (1995) Regulation of scatter factor/hepatocyte growth factor response by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15, 1110-1122.
83. Lavoie, J. L., Hickey, E., Weber, L. A. and Landry, J. (1993) Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. J. Biol. Chem. 32, 24210-24214.
84. Zhu, W., Roma, P., Pirillo, A., Pellegatta, F., and Catapano, A. L. (1996) Human endothelial cells exposed to oxidized LDL express hsp70 only when proliferating. Arterioscler. Thromb. Vasc. Biol. 16, 1104-1111.
85. Thakkar, K., and Geahlen, R. L. (1993) Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogues of piceatannol. J. Med. Chem. 36, 2950-2955.
86. Chen, J. K., Hoshi, H., McClure, D. B., and Mckeehan, W. L. (1986) Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J. Cell. Physiol. 129, 207-214.
87. Havel, R. J., Eder, H. A., and Bradgon, J. H. (1995) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34, 1345-1353.
88. Ohkawa, H., Ohishi, N., and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbitutric acid reaction. Anal. Biochem. 95, 351-358.
89. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-270.
90. Davies, P. F., Seden, III S. C., and Schwartz, S. M. (1980) Enhanced rates of fluid pinocytosis during exponential growth and monolayer regeneration by cultured arterial endothelial cells. J. Cell Physiol. 102, 119-127.
91. Phillips, P. G., and Tsan, M. F. (1988) Hyperoxia causes in creased albumin permeability of cultured endothelial monolayers. J. Appl. Physiol. 64, 1196-1202.
92. Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., and Masaki, T. (1997) An endothelial receptor for oxidized low-density lipoprotein. Nature. 386,73-77.
93. Ishii, H., Kizaki, K., Horie, S., and Kazama, M. (1996) Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J. Biol. Chem. 271, 8458-8465.
94. Borsum, T., Henriksen T., and Reisvaag, A. (1985) Oxidized low density lipoprotein can reduce the pinocytic activity in cultured human endothelial cells as measured by cellular uptake of [14C]sucrose. Atherosclerosis. 58, 81-96.
95. Burdon, R. H. (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radi. Biol. Med. 18,775-794.
96. Stiko, A., Regnstrom, J., Shah, P. K., Cercek, B., and Nilsson, J. (1996) Active oxygen species and lysophosphatidylcholine are involved in oxidized low density lipoprotein activation of smooth cell DNA synthesis. Arterioscler. Thromb. Vasc. Biol. 16, 194-200.
97. Ohlsson, B. G., Englund, M. C. O., Karlsson A. L. K., Knutsen, E., Erixon, C., Skribeck, H., Liu, Y., Bondjers, G., and Wiklund, O. (1996) Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kB to DNA and the subsequent expression of tumor necrosis factor-a and interleukin-1b in macrophages. J. Clin. Invest. 98,78-89.
98. Sen, C. K., and Packer, L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709-720.
99. Holland, J. A., Ziegler, L. M., and Meyer, J. W. (1996) Atherogenic level of low-density lipoprotein increase hydrogen peroxide generation in cultured human endothelial cells: Possible mechanism of heightened endocytosis. J. Cell Physiol. 166,144-151.
100. Brown, M. S., Dana, S. E., and Goldstein, J. L. (1974) Regulation of 3-hydroxy-3-methylglutaryl conenzyme A reductase activity in cultured human fibroblasts. J. Biol. Chem. 249, 789-796.
101. Panini, S. R., Schnitzer-polokoff, R., Spencer, T. A., and Sinensky, M. (1989) Sterol-independent regulation of 3-hydroxy-3-methylglutaryl-CoA reductase by mevalonate in Chinese hamster ovary cells. J. Biol. Chem. 264, 11044-11052.
102. Chomczynski, P., and Sacchi, N. (1987) Single step method for RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem., 162, 156-159.
103. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
104. Brown, M. S., Dana, S. E., and Goldstein, J. L. (1975) Cholesterol ester formation in cultured human fibroblasts. Stimulation by oxygenated sterols. J. Biol. Chem. 250, 4025-4027.
105. Murugesan, G., Chisolm, G. M., and Fox, P. L. (1993) Oxidized low density lipoprotein inhibits the migration of aortic endothelial cells in vitro. J. Cell Biol. 120, 1011-1019.
106. Murugesan, G., and Fox Gurunathan, P. L. (1996) Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. J. Clin. Invest. 97, 2736-2744.
107. Axelson, M., and Larsso, O. (1995) Low density lipoportein (LDL) cholesterol is converted to 27-hydroxycholesterol in human fibroblasts. J. Biol. Chem. 270:15102-15110.
108. Huang, J., Mohammadi, M., Rodrigues, G. A., and Schlessinger, J. (1995) Reduced actvation of RAF-1 and MAP kinase by a fibroblast growth factor receptor mutant deficient in stimulation of phosphatidylinositol hydrolysis. J. Biol. Chem. 270, 5065-5072.
109. Wang, D. Y., Yang, V. C., and Chen, J. K. (1997) Oxidized LDL inhibits vascular endothelial cell morphogenesis in culture. In Vitro Cell Dev. Biol. 33, 248-255.
110. Sevanian, A., Hodis, H. N., Hwang, J., Mcleod, L. L., and Peterson, H. (1995) Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. J. Lipid Res. 36, 1971-1986.
111. Colles, S. M., Irwin, K. C., and Chisolm, G. M. (1996) Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7b-hydroxycholesterol. J. Lipid Res. 37, 2018-2028.