研究生: |
蔡顯仁 Hsien-Jen Tsai |
---|---|
論文名稱: |
無機氣體表面聲波感測器研製與應用 Preparation and Application of Surface Acoustic Wave Sensor for Inorganic Gases |
指導教授: |
施正雄
Shih, Jeng-Shong |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 154 |
中文關鍵詞: | 表面聲波感測器 、主成份分析 、倒傳遞類神經網路 、迴歸分析 |
英文關鍵詞: | surface acoustic wave sensor, principal component analysis, back propagation network, regression analysis |
論文種類: | 學術論文 |
相關次數: | 點閱:323 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中研製一多頻道氣體表面聲波感測器(surface acoustic wave sensor, SAW)以偵測空氣中二氧化氮(nitrogen dioxide, NO2)及一氧化碳(carbon monoxide, CO),在表面聲波晶片上塗佈Ru3+/ cryptand[2,2]與Zn2+/ cryptand[2,2]辨識膜分別對NO2及CO作感測,本研究發現待測氣體與塗佈物間吸附現象為物理吸附,可反覆使用具良好再現性,並且使用壽命超過一個月;由氣體濃度效應研究中發現,本研究研製的表面聲波感測器頻率訊號與CO及NO2濃度皆有良好的線性關係,其中Ru3+/ crypatnd[2,2]及Zn2+/ cryptand[2,2]偵測NO2及CO的偵測下限分別為0.176與0.699 ppm,皆低於恕限量及排放標準。本研究亦探討環境溫度和濕度對表面聲波感測器的影響,各種空氣中有機揮發污染物對表面聲波感測器偵測NO2與CO可能造成的干擾亦被探討。
本研究亦藉由數學統計方法中的主成分分析法(principal component analysis, PCA)來確定本研究所選擇的塗佈物足以分辨NO2及CO,由研究結果顯示在二維的X-Y主成份分數散佈圖(PCA scores plot),其中NO2與CO各自成群且相互分離即可證明確實足以分辨NO2及CO。另外亦使用類神經網路中監督型倒傳遞神經網路(back propagation network, BPN)來作確認及辨別NO2和CO,倒傳遞神經網路系統亦顯示所選的表面聲波塗佈物Ru3+/ crypatnd[2,2]和Zn2+/ cryptand[2,2]確可分辨NO2及CO作為定性分析,多變項複迴歸分析技術(multivariate multiple regression analysis)亦用來作定量分析。
A multichannel surface acoustic wave (SAW) gas sensor system was prepared to detect NO2 and CO in the air. The coated Ru3+/ cryptand[2,2] and Zn2+/ cryptand[2,2] SAW crystals were applied to recognize NO2 and CO, respectively. The physical adsorption was found for the adsorption of these inorganic gases onto respective coating materials. The SAW sensor also showed good reproducibility and good enough lifetime of ≧ 30 days for detection of NO2 and CO. The detection limits of this SAW sensor with Ru3+/ cryptand[2,2] and Zn2+/ cryptand[2,2] coatings for NO2 and CO were 0.172 and 0.699 ppm respectively, which were lower than occapational exposure limits for both gases and implied that the developed SAW sensor in this study could be employed for environmental analysis for both gases. The concentration effect of NO2 and CO on the frequency responses of the SAW sensor was studied and showed good linear responses with the concentrations of NO2 and CO, respectively. Effects of temperature and humidity on the SAW sensor were also investigated and discussed. Furthermore, the interference of some organic vapors to the detection of NO2 and CO with the SAW sensor was also studied and discussed.
The principal component analysis (PCA) was also applied in this study to confirm that appropriate coating materials for NO2 and CO were selected. Two dimension PCA scores plot showed good separation between NO2 and CO which implied that NO2 and CO can be distinguished clearly by the two-channel SAW sensor. In addition, an artificial neural network, using back propagation network (BPN), was also used to recognize NO2 and CO gases and it shows the distinction of these inorganic gases qualitatively by the two-channel SAW sensor with Ru3+/ crypand[2,2] and Zn2+/ crypatnd[2,2] coatings. The quantitative analysis for NO2 and CO were also studied by the multivariate multiple regression analysis.
1. http://www.chem.qmu1.ac.uk/iupac/
2. Janata, J.; Bezegh, A., Anal Chem., 1988, 60, 62R
3. Diamond, D., Principles of chemical and biological sensors, John Willy & Sons, 1998
4. Mitrovics, J.; Ulmer, H.; Weimar, U.; Gopel, W., Modular Sensor Systems for Gas Sensing and Odor Monitoring: The MOSES Concept, Acc. Chem. Res., 1998, 31, 307-315.
5. Sauerbery, G. Z., Phys., 1959, 155, 206
6. Janata, J.; Josowicz, M., Chemical Sensors, Anal. Chem., 1998, 70, 179R-208R
7. Janata, J., Centennial Retrospective on Chemical Sensors, Anal. Chem., 2001, 73, 150A-153A
8. 伍秀菁;汪若文;林美吟, 微機電技術與應用, 國科會精儀中心, 2003
9. Foote, R. S.; Khandurina, J.; Jacobson, S. C.; Ramsey, J. M., Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes, Anal. Chem., 2005, 77, 57-63
10. Perez, G. P.; Crooks, R. M., Pore-Bridging Poly(dimethylsiloxane) Membranes as Selective Interfaces for Vapor-Phase Chemical Sensing, Anal. Chem., 2004, 76, 4137-4142
11. Henry, C. S.; Fritsch, I., Microfabricated Recessed Microdisk Electrodes: Characterization in Static and Convective Solutions, Anal. Chem., 1999, 71, 550-556
12. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H., Nanotube Molecular Wires as Chemical Sensors, Science, 2000, 287, 622-625
13. Erickson, D.; Liu, X.; Krull, U.; Li, D., Electrokinetically Controlled DNA Hybridization Microfluidic Chip Enabling Rapid Target Analysis, Anal. Chem., 2004, 76, 7269-7277
14. Campbell, R., Biology, 6th, Benjamin Cummings, 2002
15. Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R., Cross-Reactive Chemical Sensor Arrays, Chem. Rev., 2000, 100, 2595-2626
16. Stankova, M.; Ivanov, P.; Llobet, E.; Brezmes, J.; Vilanova, X.; Grcia, I.; Can, C.; et. al., Sputtered and screen-printed metal oxide-based integrated micro-sensor arrays for the quantitative analysis of gas mixtures, Sens. Actuators B, 2004, 103, 23-30
17. Llobet, E.; Ivanov, P.; Vilanova, X.; Brezmes, J.; Hubalek, J.; Malysz, K.; Grcia, I., Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems, Sens. Actuators B, 2003, 96, 94-104
18. Floyd., Electronics fundamentals circuit, device, and application. 6th, Pearson Prentice Hall, 2004
19. Eklov, T.; Lundstrom, I., Distributed Sensor System for Quantification of Individual Components in a Multiple Gas Mixture, Anal. Chem., 1999, 71, 3544-3550
20. Lonergan, M. C.; Severin, E. J.; Doleman, B. J.; Beaber, S. A.; Grubbs, R. H.; Lewis, N. S., Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors, Chem. Mater., 1996, 8, 2298-2312
21. White, J.; Kauer, J. S.; Dickinson, T. A.; Walt, D. R., Rapid Analyte Recognition in a Device Based on Optical Sensors and the Olfactory System, Anal. Chem., 1996, 68, 2191-2202
22. Chen, Q.; Wang, J., Rayson, G.; Tian, B.; Lin. Y., Sensor array for carbohydrates and amino acids based on electrocatalytic modified electrodes, Anal. Chem., 1993, 65, 251-254
23. Lin, H. B.; Shih, J. S., Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors, Sens. Actuators B, 2003, 92, 243-254
24. Chang, P.; Shih, J. S., Multi-channel piezoelectric quartz crystal sensor for organic vapours, Anal. Chim. Acta, 2000, 403, 39–48
25. Jurs, P. C.; Bakken, G. A.; McClelland, H. E., Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes, Chem. Rev., 2000, 100, 2649-2678
26. 盧炳勳; 曹登發, 類神經網路理論與應用, 全華科技圖書, 1992
27. 張健邦, 應用多變量分析, 文富出版社, 1993
28. 黃俊英, 多變量分析 7th , 華泰文化, 2000
29. 陳正昌; 程炳林; 陳新豐; 劉子鍵, 多變量分析方法-統計軟體應用, 五南圖書, 2003
30. 葉怡成, 類神經網路模式應用與實作, 儒林圖書, 2000
31. 蔡瑞煌, 類神經網路概論, 三民書局, 1995
32. Cooley, W. W.; Lohnes, P. R., Multivariate data analysis, John Wiley& Sons, 1971
33. Person, Philosophy Magazine, 1901, 6, 559-572
34. Hotelling, H., Analysis of a Complex of Statistical Variables into Principal Components, Journal of Education Psychology, 1933, 24, 417-441
35. Hotelling, H., Relations Between two Sets of Variates, Biometrika, 1936, 28, 321-337
36. 林清山, 多變項分析統計法, 東華書局, 1993
37. 何培基, SAS/PC入門與語言手冊, 松岡電腦圖書, 1988
38. 林傑斌; 陳湘; 劉明德, SPSS11統計分析實務設計寶典, 博碩文化, 2002
39. Ha, S. C.; Kim, Y. S.; Yang, Y.; Kim, Y. J.; Cho, S. M.; Yang, H., Integrated and microheater embedded gas sensor array based on the polymer composites dispensed in micromachined wells, Sens. Actuators B, 2005, 105, 549-555
40. Santos, J.P.; Arroyo, T.; Aleixandre, M.; Lozano, J.; Sayago, I.; Garca, M.; Fernndez, M.J., A comparative study of sensor array and GC–MS: application to Madrid wines characterization, Sens. Actuators B, 2004, 102, 299-307
41. 戴汝為, 人工智慧, 五南圖書, 2003
42. Haykin, S., Neural network: a comprehensive function, Macmillan College Publishing Company, 1994
43. 林昇甫; 洪成安, 神經網路入門與圖樣辨識, 全華科技圖書, 1999
44. 傅心家, 神經網路導論, 定碁科技, 1991
45. 郭益銘, 應用多變量統計與類神經網路分析雲林沿海地區地下水水質變化, 國立台灣大學農業工程研究所碩士論文, 1999
46. 張平, 有機氣體石英壓電晶體感測器的研製與應用, 國立台灣師範大學化學所博士論文, 2000
47. Gokel, G.., Crown ethers & cryptands, Royal Society of Chemistry, 1991
48. Lehn, J. M., Cryptates: the chemistry of macropolycyclic inclusion complexes, Acc. Chem. Res., 1978, 11, 49-57
49. Lu, C.; Czanderna, C. A. W., Application of Piezoelectric Quartz Crypstal Microbalance, Elservier Science, 1984
50. 吳朗, 壓電陶瓷-壓電, 全欣科技圖書, 1994
51. 吳朗, 感測與轉換原理、元件與應用, 全欣科技圖書, 1992
52. Michael, J. V., Acoustic wave sensors and their technology, Ultrasonics, 1998, 36, 7-14
53. Zemel, J. M., Rev. Sci. Instrum., 1990, 61, 1579
54. Martin, S. J.; Ricco, A. J.; Niemczyk, T. M.; Frye, G. C., Sens. Actuators, 1989, 20, 253-268
55. Wenzel, S. W., Applications of Ultrasonic Lamb Waves, Dostoral Dissertation, EECS Department, University of California, Berkeley, CA, 1992
56. Bruno, P.; Cicala, G.; Corsi, F.; Dragone, A.; Losacco, A.M., High relative humidity range sensor based on polymer-coated STW resonant device, Sens. Actuators B, 2004, 100, 126-130
57. Ollivier, T. C.; Corinne De´jousa; Dominique Rebie`rea; Jacques Pistre´a; Sylvie Comeaub; Daniel Moynetc; Jean Bezian., Study of acoustic Love wave devices for real time bacteriophage detection, Sens. Actuators B, 2003, 91, 275–284
58. Rayleigh, L.; Voltmer, F. W., Direct Piexoelectric Coupling to Surface Elastic Waves, Apply. Phys. Lett., 1965, 7, 314-316
59. Ballantine, D. S.; White, R. M.; Martin, S. J.; Wohltjen, H.; Zellers, E. T., Acoustic Wave Sensors Theory design and physico-chemical application, Academic press, 1997
60. Wohltjen, H., Mechanism of Operation and Design Considerations for Surface Acoustic Wave Device Vapor Sensors, Sens. Actuators, 1984, 5, 307-325
61. Morgan, D., Surface-Wave Device for Signal Processing, Amsterdam, 1991, 152
62. Wohltjen, H.; Dessy, R., Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description, Anal. Chem., 1979, 51, 1458-1464
63. Lewis, M. F., Surface Acoustic Wave devices and Applications 6. Oscillators-the next successful surface acoustic wave device, Ultrasonics, 1974, 12, 115-123
64. Ash, E. A., Acoustic Aurface Wave, Speringer-Verlag, New York, 1978
65. Auld, B. A., Acoustic Fields and Waves in Solids, 2nd, Wiley-Interscience, New York, 1973
66. Pedersen, C. J., Cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc., 1967, 89, 7017-7036
67. Allen, J. B.; Larry, R.F., Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons. Inc, 2001
68. 彭成鑑, 壓電材料, 科儀新知, 1995, 16, 18-29
69. http://www.epa.gov.tw/main/index.asp
70. http://www.e-safety.com.tw/2_main/206_msds_2/search.htm
71. http://www.yoketant.com.tw/
72. http://www.wenshing.com.tw/
73. 周鈺禎, 雙頻道表面聲波感測系統研製與應用, 國立台灣師範大學化學所碩士論文, 2005