研究生: |
楊珺惠 Yang, Chun-Hui |
---|---|
論文名稱: |
匯率變動的因素-以日本為例 Factors of Foreign Exchange Rate Variance - Study on Japanese Market |
指導教授: |
印永翔
Ying, Yung-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
高階經理人企業管理碩士在職專班(EMBA) Executive Master of Business Administration |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 匯率 、時間序列 、自我廻歸整合移動平均模型 |
英文關鍵詞: | Exchange Rate, Time Series, ARIMA model |
DOI URL: | https://doi.org/10.6345/NTNU202205094 |
論文種類: | 學術論文 |
相關次數: | 點閱:228 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以日本匯率為樣本,以ARIMA模型描寫日圓匯率短期波動的現象。因布林敦森林體系於1973年瓦解之後,日圓步入浮動匯率年代,變動相當劇烈。匯率預測模型如貨幣模型,資產模型,與ARIMA皆是在不同假設與情境下,經濟學界所提出的模型。因為二戰後日圓匯率屢逢政策面或國際因素等影響,例如80年代的廣場協定,安倍首相的安倍三箭政策,日圓匯率波動並不完全可以以貨幣模型或資產模型,來描繪其變動情形。故本論文採取ARIMA描述其短期變動,各種估計模型中,以AR(1) MA(8,11) 模型為最佳的估計結果。
We adopted ARIMA model to describe the short-run fluctuations of Japanese yen. Due to the collapse of Bretton Woods System, Japanese yen has experienced high volatility since 1973. Based on different assumptions and circumstances, forecast models of exchange rate such as monetary, asset and ARIMA model had been proposed. Because of international and institutional factors, the fluctuations of Japanese yen are subject more than fundamental factors per se. Therefore, we adopted ARIMA model to describe the short-run fluctuation of Japanese yen, AR(1)MA(8,11) is best model among all choices based on scrutinized evaluations.
中文部分:
1.中央銀行(2013),近期日元貶值之成因與影響分析,新聞參考資料。
2.王良欽(1989),外匯操作理論與實務,五南圖書出版公司。
3.吳柏林(1995),時間數列分析導論,華泰書局。
4.高超洋、簡汝嫺 (2012),近年日元升值對日本產業影響之研究,中央銀行國際金融參考資料第23輯。
5.曹耀鈞(2011),自我廻歸整合移動平均法在指數股票型基金之預測效果研究,臺灣銀行季刊第六十二卷第三期。
6.陳旭昇(2013),時間序列分析-總體經濟與財務金融之應用,修訂版,台北:東華出版社。
7.陳志詳(2003)-實質匯率之探討以OECD國家實證研究,國立中山大學中山學術研究所碩士論文。
8.董昇旗,玉山銀行雙月刊-企業外匯避險策略,https://www.esunbank.com.tw/about/1137.essay
9.謝美玉(2002),企業的匯風險管理與策略,國立中山大學管理學院國際高階經營碩士學程專班碩士論文。
英文部分:
1.Atkociunas V. ( 2010 ), Short-Term Currency Exchange Rate Forecasting With Econometric Models, Kaunas, ISM University of Management and Economics.
2.Carnot, N., Koen, V., Tissot, B. (2005). Economic Forecasting. Basingstoke: Palgrave Macmillan.
3.Choi, J. J. (1986), "Amodel of Firm Valuation with Exchange Exposure", Journal of International Bussiness Studies, Summer, pp. 153-159.
4.Fang, H., and K.K. Kwong, 1991, "Forecasting Foreign Exchange Rate", The Journal of Business Forecasting, pp.16-17.
5.Greene,W.H. ( 2008), Econometric Analysis. Upper Saddle River: Pearson Prentice Hall.
6.Hodder, J. E. (1982), "Exposure to Exchange Rate Movement", Journal of International Economics, 12, pp.375-386.
7.Joseph, N.L., 2002. “Modelling the impacts of interest rate and exchange rate changes on UK stock returns”, Derivatives Use, Trading & Regulation 7(4), 306-323.
8.Koop, G. (2006). Analysis of Financial Data. Chichester: John Wiley & Sons, Ltd.
9.L.R. Klein , and J.Y. Park, 1993, “Economic Forecasting at High-Frequency Intervals”, Journal of Forecasting, vol.12, PP.301-319.
10.Maddison, Angus, (2001)-The World Economy: A Millennial Perspective.
11.Makridakis, S., Wheelwright, S.C., Hyndman, R.J. (1998). Forecasting Meghods and Applications. New York: John Wiley & Sons, Inc.
12.Mao, C. K. G., and W. Kao. (1990), "On Exchange Rate Changes and Stock Price Reactions", Journal of Business. Finance and Accounting, 17(3), 444-449.
13.Ravindran,R., Ganisen, S. and Roslan, M.R. (2008). Exchange Rate Forecasting - An Application of Higher Order ARIMA and ARCH models. Annual London Conference on Money, Economy and Management.
14.Sharpiro, A. C. (1992), Multinational Financial Management, 4th edn, Boston, MA: Allyn & Bacon.