研究生: |
郭柏宏 Kuo, Bo-Hong |
---|---|
論文名稱: |
設計合成選擇性標定含胍基化合物的化學探針分子 Design and Synthesis of Chemical Probes for Selective Labelling of Guanidine-Bearing Molecules |
指導教授: |
謝俊結
Shie, Jiun-Jie 杜玲嫻 Tu, Ling-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 胍 、精胺酸 、1,2-雙酮 、二苯乙醇酸重排反應 、生物偶聯反應 |
英文關鍵詞: | guanidine, arginine, 1,2-diketone, benzilic rearrangement, bioconjugation |
DOI URL: | http://doi.org/10.6345/NTNU202000986 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Shieh, P.; Bertozzi, C. R. Org. Biomol. Chem. 2014, 12, 9307–9320. Design strategies for bioorthogonal smart probes.
[2] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. Click chemistry: Diverse chemical function from a few good reactions.
[3] Shih, H. W.; Kamber, D. N.; Prescher, J. A. Curr. Opin. Chem. Biol. 2014, 21, 103–111. Building better bioorthogonal reactions.
[4] Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635–646. Über neue organische phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine.
[5] Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007–2010. Cell surface engineering by a modified Staudinger reaction.
[6] Wei, F.; Wang, W.; Ma, Y.; Tung, C. H.; Xu, Z. Chem. Commun. 2016, 52, 14188–14199. Regioselective synthesis of multisubstituted 1,2,3-triazoles: Moving beyond the copper-catalyzed azide-alkyne cycloaddition.
[7] Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc. 2004, 126, 15046–15047. A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems.
[8] Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518–13519. Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity.
[9] Devaraj, N. K.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2008, 19, 2297–2299. Tetrazine-based cycloadditions: Application to pretargeted live cell imaging.
[10] Knall, A. C.; Slugovc, C. Chem. Soc. Rev. 2013, 42, 5131–5142. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: A (high) potential click chemistry scheme.
[11] Stephanopoulos, N.; Francis, M. B. Nat. Chem. Biol. 2011, 7, 876–884. Choosing an effective protein bioconjugation strategy.
[12] Shiu, H. Y.; Chan, T. C.; Ho, C. M.; Liu, Y.; Wong, M. K.; Che, C. M. Chem. Eur. J. 2009, 15, 3839–3850. Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containlng peptides in aqueous medium.
[13] Koniev, O.; Leriche, G.; Nothisen, M.; Remy, J. S.; Strub, J. M.; Schaeffer-Reiss, C.; VanDorsselaer, A.; Baati, R.; Wagner, A. Bioconjugate Chem. 2014, 25, 202−206. Selective irreversible chemical tagging of cysteine with 3-arylpropiolonitriles.
[14] Dovgan, I.; Ursuegui, S.; Erb, S.; Michel, C.; Kolodych, S.; Cianférani, S.; Wagner, A. Bioconjugate Chem. 2017, 28, 1452−1457. Acyl fluorides: Fast, efficient, and versatile lysine-based protein conjugation via plug-and-play strategy.
[15] Ban, H.; Nagano, M.; Gavrilyuk, J.; Hakamata, W.; Inokuma, T.; Barbas, C. F. Bioconjugate Chem. 2013, 24, 520−532. Facile and stabile linkages through tyrosine: Bioconjugation strategies with the tyrosine-click reaction
[16] Dirksen, A.; Hackeng, T. M.; Dawson, P. E. Angew. Chem. Int. Ed. 2006, 45, 7581–7584. Nucleophilic catalysis of oxime ligation.
[17] Berlinck, R. G. S. Nat. Prod. Rep. 1996, 13, 377–409. Natural guanidine derivatives.
[18] Berlinck, R. G. S.; Romminger, S. Nat. Prod. Rep. 2016, 33, 456–490. The chemistry and biology of guanidine natural products.
[19] Berlinck, R. G. S.; Bertonha, A. F.; Takaki, M.; Rodriguez, J. P. G. Nat. Prod. Rep. 2017, 34, 1264–1301. The chemistry and biology of guanidine natural products.
[20] Grundler, V.; Gademann, K. ACS Med. Chem. Lett. 2014, 5, 1290−1295. Direct arginine modification in native peptides and application to chemical probe development.
[21] Nishimura, T.; Kitajima, K. J. Org. Chem. 1979, 44, 818–824. Reaction of Guanidines with α-Diketones. Syntheses of 4, 5-disubstituted-2-aminoimidazoles and 2, 6-unsymmetrically substituted imidazo[4, 5-d]imidazoles.
[22] Tanabe, S.; Sakaguchi, T. Chem. Pharm. Bull. 1978, 26, 337–342. Reaction of guanidines with α-diketones. V. Mechanism of the fluorescence reaction of monosubstituted guanidines with 9, 10-phenanthraquinone.
[23] Sibbersen, C.; Palmfeldt, J.; Hansen, J.; Gregersen, N.; Jørgensen, K. A.; Johannsen, M. Chem. Commun. 2013, 49, 4012–4014. Development of a chemical probe for identifying protein targets of α-oxoaldehydes.
[24] Thompson, D. A.; Ng, R.; Dawson, P. E. J. Pept. Sci. 2016, 22, 311–319. Arginine selective reagents for ligation to peptides and proteins.
[25] Wanigasekara, M. S. K.; Chowdhury, S. M. Analytica Chimica Acta, 2016, 935, 197–206. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.
[26] Wanigasekara, M. S. K.; Huang, X.; Chakrabarty, J. K.; Bugarin, A.; Chowdhury, S. M. ACS Omega 2018, 3, 14229−14235. Arginine-selective chemical labeling approach for identification and enrichment of reactive arginine residues in proteins.
[27] Quagliato, D. A.; Andrae, P. M.; Fan, Y. (2007), US Appl. Patent, US20070203116A1.
[28] Selman, S.; Eastham, J. F. Quart. Rev., Chem. Soc. 1960, 14, 221–235. Benzilic acid and related rearrangements.
[29] Hoyos, P.; Sinisterra, J. V.; Molinari, F.; Alcántara, A. R.; DeMaría, P. D. Acc. Chem. Res. 2010, 43, 288–299. Biocatalytic strategies for the asymmetric synthesis of α-hydroxy ketones.
[30] Katritzky, A. R.; Borja, S. B.; Marquet, J.; Sammes, M. P. J. Chem. Soc., Perkin Trans. 1 1983, 2065–2069. Quaternary salts of 2H-imidazoles.
[31] Gundeti, M.; Sisodia, B.; Marlewar, S.; Reddy, R. J. Braz. Chem. Soc. 2012, 23, 171–179. Metal chloride hydrates as Lewis acid catalysts in multicomponent synthesis of 2,4,5-triarylimidazoles or 2,4,5-triaryloxazoles
[32] Raju, G. N.; Sai, K. B.; Myneni, R. T.; Navya, N.; Yasaswini, R. S.; Nadendla, R. R. World J. Pharm. Res. 2015, 5, 2625–2633. Synthesis, characterization and antimicrobial evaluation of novel 2,3-diphenyl quinoxaline-1,4-di-n-oxide derivatives.
[33] Ren, W.; Xia, Y.; Ji, S. J.; Zhang, Y.; Wan, X.; Zhao, J. Org. Lett. 2009, 11, 1841–1844. Wacker-type oxidation of alkynes into 1,2-diketones using molecular oxygen.
[34] Che, C. M.; Yu, W. Y.; Chan, P. M.; Cheng, W. C.; Peng, S. M.; Lau, K. C.; Li, W. K. J. Am. Chem. Soc. 2000, 122, 11380–11392. Alkyne oxidations by cis-dioxoruthenium(VI) complexes. A formal [3 + 2] cycloaddition reaction of alkynes with cis-[(Cn*)(CF3CO2)Ru(VI)O2]ClO4 (Cn*=1,4,7-trimethyl-1,4,7-triazacyclononane).
[35] Charpe, V. P.; Sagadevan, A.; Hwang, K. C. Green Chem. 2020, advance article. Visible light-induced aerobic oxidation of diarylalkynes to α-diketones catalyzed by copper-superoxo at room temperature. [DOI: 10.1039/d0gc00975j]
[36] Nobuta, T.; Tada, N.; Hattori, K.; Hirashima, S. I.; Miura, T.; Itoh, A. Tetrahedron Lett. 2011, 52, 875–877. Facile aerobic photo-oxidative synthesis of α-diketones from alkynes.
[37] Ozanne, A.; Pouységu, L.; Depernet, D.; François, B.; Quideau, S. Org. Lett. 2003, 5, 2903–2906. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers.
[38] Sangi, Diego P.; Cominetti, Márcia R.; Becceneri, Amanda B.; Resende, Flavia A.; Varanda, Eliana A.; Montanari, Carlos A.; Paixão, Marcio W.; Corrêa, Arlene G. J. Med. Chem. 2015, 11, 736–746. Molecular design, synthesis and evaluation of 2,3-diarylquinoxalines as estrogen receptor ligands.
[39] Qi, C.; Jiang, H.; Huang, L.; Chen, Z.; Chen, H. Synthesis 2011, 3, 387–396. DABCO-catalyzed oxidation of deoxybenzoins to benzils with air and one-pot synthesis of quinoxalines.
[40] Yates, P.; Lewars E. G.; McCabe, P. H. Can. J. Chem. 1970, 48, 788–795. Cyclooctatetraenoquinones. I. The synthesis and structure of dibenzo[a,e]cyclooctene-5,6-dione.
[41] Mbua, N. E.; Guo, J.; Wolfert, M. A.; Steet, R.; Boons, G. J. ChemBioChem 2011, 12, 1912–1921. Strain-promoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis.
[42] Schmidt, S.; Dörr, T. B.; Drochner, A.; Vogel, H. Chem. Eng. Technol. 2016, 39, 1519–1526. Modified Mo/V/W-mixed oxides for catalytic tar removal from biosyngas via oxidation.
[43] Barton, D. H. R.; Elliott, J. D.; Géro, S. D. J. Chem. Soc., Perkin Trans. 1 1982, 2085–2090. Synthesis and properties of a series of sterically hindered guanidine bases.
[44] Goldberg, R. N.; Kishore, N.; Lennen, R. M. J. Phys. Chem. Ref. Data 2002, 31, 231–370. Thermodynamic quantities for the ionization reactions of buffers in water.
[45] Saito, S.; Ozaki, H.; Itano, H. E. A. Chem. Pharm. Bull. 1982, 30, 3890–3896. N-Substituted phenanthroimidazolamines from the reaction of phenanthrenequinone with monosubstituted guanidines.
[46] Warren, S. A. (2012) The synthesis of hydroxy-iso-evoninic acid via a benzilic ester rearrangement. Unpublished doctoral dissertation, Department of Chemistry, Imperial College London, London, UK.
[47] Jung, M. E.; Miller, S. J. J. Am. Chem. Soc. 1981, 103, 1984–1992. Total synthesis of isopavine and intermediates for the preparation of substituted amitriptyline analogues: Facile routes to substituted dibenzocyclooctatrienes and dibenzocycloheptatrienes.
[48] Hioki, Y.; Itoh, M.; Mori, A.; Okano, K. Synlett. 2020, 31, 189–193. One-pot deprotonative synthesis of biarylazacyclooctynones.
[49] Cruchter, T.; Harms, K.; Meggers, E. Chem. Eur. J. 2013, 19, 16682–16689. Strain-promoted azide-alkyne cycloaddition with ruthenium(II)-azido complexes.
[50] Trosien, S.; Waldvogel, S. R. Org. Lett. 2012, 14, 2976–2979. Synthesis of highly functionalized 9,10-phenanthrenequinones by oxidative coupling using MoCl5.
[51] Kornmayer, S. C.; Rominger, F.; Gleiter, R. Synthesis 2009, 15, 2547–2552. Synthesis of 11,12-didehydrodibenzo[a,e]cycloocten-5(6H)-one: A strained eight-membered alkyne.
[52] Colombo, M.; Sommaruga, S.; Mazzucchelli, S.; Polito, L.; Verderio, P.; Galeffi, P.; Corsi, F.; Tortora, P.; Prosperi, D. Angew. Chem. Int. Ed. 2012, 51, 496–499. Site-specific conjugation of ScFvs antibodies to nanoparticles by bioorthogonal strain-promoted alkyne-nitrone cycloaddition.
[53] Zheng, J.; Liu, K.; Reneker, D. H.; Becker, M. L. J. Am. Chem. Soc. 2012, 134, 17274–17277. Post-assembly derivatization of electrospun nanofibers via strain-promoted azide alkyne cycloaddition.
[54] Bicker, K. L.; Thompson, P. R. Biopolymers. 2013, 99, 155–163. The protein arginine deiminases: Structure, function, inhibition, and disease.
[55] Bicker, K. L.; Subramanian, V.; Chumanevich, A. A.; Hofseth, L. J.; Thompson, P. R. J. Am. Chem. Soc. 2012, 134, 17015−17018. Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination.
[56] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512–7515. NMR chemical shifts of common laboratory solvents as trace impurities.
[57] Elliott, I. W.; Sloan, M. J.; Tate, E. Tetrahedron 1996, 52, 8063–8072. Synthetic entry to dibenzo[b,f]oxinin and dibenzo[b,f]azonine derivatives through a dibenzo[a,e]cycloocten-5-one.
[58] Gore, S.; Baskaran, S.; König, B. Org. Lett. 2012, 14, 4568–4571. Fischer indole synthesis in low melting mixtures.
[59] Jia, M.; Monari, M.; Yang, Q. Q.; Bandini, M. Chem. Commun. 2015, 51, 2320–2323. Enantioselective gold catalyzed dearomative [2+2]-cycloaddition between indoles and allenamides.
[60] Kollenz, G.; Theuer, R.; Ott, W.; Peters, K.; Peters, E. M.; Schnering, H. G. Heterocycles, 1988, 27, 479–494. Reactions with cyclic oxalyl compounds, part 26: the Fischer-indole rearrangement of sterically hindered systems, part 7: diaza[n.3.3]propellanes via thermally initiated Fischer-indolization.
[61] Letcher, R. M.; Kwok, N. C.; Lo, W. H.; Ng, K. W. J. Chem. Soc., Perkin Trans. 1, 1998, 10, 1715–1719. Novel heterocycles from 5-methyldibenz[b,f]azocin-6,12-dione and its derivatives.
[62] Hosoya, T.; Kii, I.; Yoshida, S.; Matsushita, T. (2013), US Appl. Patent, US2013011901 (A1).