簡易檢索 / 詳目顯示

研究生: 陳郁嵐
Chen, Yu-Lan
論文名稱: 利用離體電生理模式探討斑馬魚端腦雙側之功能性連結及突觸可塑性
Study of the functional connectivity and synaptic plasticity in bilateral telencephalon of zebrafish by using in vitro electrophysiological approaches
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 斑馬魚腦側化端腦突觸可塑性長期增益效應長期抑制效應NMDA受器同側對側電生理
英文關鍵詞: cerebral lateralization, contralateral, electrophysiological techniques, ipsilateral, NMDA receptor
DOI URL: https://doi.org/10.6345/NTNU202205103
論文種類: 學術論文
相關次數: 點閱:134下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦側化(cerebral lateralization)為一種脊椎動物常見的現象,意指大腦兩側半球各自對不同的功能扮演較優勢的角色(dominant);腦側化對於生物個體的行為表徵扮演著重要的角色,例如人類的左右腦各負責不同類型的工作;又或是魚類會利用兩眼視覺系統,區別熟悉與陌生的環境。硬骨魚的端腦(telencephalon)被認為與學習和記憶的形成有關,特別是端腦的背外側區(dorsal lateral, Dl)及背中側區(dorsal medial, Dm)最為相關,前人利用螢光染劑DiI注射於Dl腦區後,可在Dm腦區偵測到螢光訊號,證明了Dl和Dm腦區間存在神經投射的連結。近年來,斑馬魚已成為探討學習與記憶、藥物成癮以及焦慮等行為非常重要的模式物種。從斑馬魚的胚胎發育研究以及行為觀察,已有充分的證據顯示斑馬魚腦部和哺乳類一樣,具有腦側化的現象,但關於斑馬魚端腦腦側化的研究卻非常缺乏。因此,本實驗目的為利用電生理技術探討傳遞到同側(ipsilateral)以及對側(contralateral)的Dl-Dm投射路徑的神經傳遞與突觸可塑性(synaptic plasticity)現象的異同。首先,實驗測得在單側的Dl給予電刺激,能夠在同側以及對側的Dm引發一個負電位的電場電位(negative field potential),還可利用高頻電刺激(high frequency stimulation, HFS) 及低頻電刺激(low frequency stimulation, LFS),分別誘發出長期增益效應(long-term potentiation, LTP)以及長期抑制效應(long-term depression, LTD) ,這兩項均為探討神經突觸可塑性的重要性指標。實驗中利用連續五次的HFS (每秒100 Hz)來誘發LTP,結果顯示在同側及對側的Dm腦區所誘發的LTP現象,此外,如預先投予NMDA受器的拮抗劑D-AP5 (30 μM)10分鐘後才進行誘發,可完全阻斷對側LTP的產生。但將D-AP5藉由灌流廓清後,則又可重新利用HFS誘發出LTP。由此證實了HFS所誘發的對側LTP,需依賴NMDA受器的活化。將左右兩側誘發的LTP實驗結果,經交叉比對分析後發現,從左側及右側的Dl給予HFS,所誘發出的同側LTP會有所差異,從右側誘發出的LTP強度會比左側誘發的小,而單從右側Dl誘發的LTP而言,其訊號強度同側會較對側的小。本實驗接着以LFS (每秒1 Hz)持續刺激20分鐘,或是投予代謝型谷氨酸受體興奮劑DHPG (40 μM) 10分鐘來誘發LTD,兩者都能誘發出至少維持一小時的LTD現象。而我們將以代謝型谷氨酸受體興奮劑DHPG所誘發的同側及對側結果比較後,我們發現對側的抑制效果較同側好。另外,Dm腦區所誘發的電場電位可以分成突觸的(synaptic, P1)以及非突觸的(non-synaptic, N2)組成,而對側Dm腦區的P1時間較同側Dm腦區的時間長,可能造成的原因為對側端腦的紀錄點較同側端腦紀錄點的距離更遠,因此有對側P1時間較同側長的現象。另外,藉由即時聚合酶鏈鎖反應(Real-time polymerase chain reaction, Real-time PCR)技術,我們發現NMDAR1a受器的mRNA在左側端腦的表現上高於右側端腦的趨勢。綜合而言,本研究的重要發現為首次觀察到斑馬魚端腦的Dl腦區和Dm腦區之間,存在著同側以及對側神經連結的突觸可塑性現象,並運用了電生理模式證明了斑馬魚端腦具有腦側化的現象。本研究成果將有助於日後為利用基因轉殖斑馬魚探討端腦腦側化分子機轉奠定基礎。

    Cerebral lateralization is a common feature among vertebrates including reptiles, fishes and amphibians. It is a phenomenon of specialization of function between right and left hemisphere of the brain. The complementary of function between right and left hemisphere leaves individual a more integrated cognitive behavior, which is profoundly affected by lateralization. For example, the preferential eye use of zebrafish. Zebrafish tends to use particular eye to observe different stimulus and is known as left eye system (LES) and right eye system (RES) which resemble two hemisphere of human brain each responsible for different tasks. In teleost, telencephalon is considered related to the limbic system of mammals, which plays essential role on the learning and memory, especially lateral (Dl) and medial (Dm) division of the dorsal telencephalon. Tract-tracing studies suggested the neural connection between Dl and Dm division via afferent Dl fibers projected to Dm division.
    Zebrafish has becoming an important animal model for studying the neural mechanism of learning and memory, drug addiction, and anxiety disorder. Our previous results showed the phenomenon of cerebral lateralization in zebrafish. The present study was aimed to investigate neurotransmission and synaptic plasticity in projections from the Dl to the Dm in zebrafish by using electrophysiological approaches. Our results showed that giving unilateral electrical stimulation at either side of the Dl division would evoke a negative field potential (FP) in both contralateral and ipsilateral side of Dm division. We also conducted the test of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). By giving five trains of high frequency stimulation (HFS; 100 Hz for 1 s), we induced NMDAR-dependent LTP. To further investigate whether HFS-induced LTP is NMDAR-dependent, we apply NMDA receptor antagonist, DL-AP5 (30 μM, suprafused for 10 mins) that completely blocked the HFS-induced LTP in both side of Dm. In addition, the formation of LTP restored after washout DL-AP5 by continuous ACSF suprafusion. It proved the involvement of NMDA receptor in the LTP formation. We also demonstrated a significant difference on the stimulation site and the amplitude of LTP. Electrical stimulating from right side of Dl would bring out smaller amplitude of LTP compared with stimulating from the left. Furthermore, stimulation from the right will bring out smaller amplitude of LTP on the ipsilateral side than contralateral side. Collectively, these results suggest a cerebral lateralization existed in the Dm-Dl circuit of zebrafish. We also inducted LTD by giving low frequency stimulation (LFS; 1 Hz for 1 s) or applying group I mGluR agonist, DHPG (40 μM, suprafused for 10 min). Both of them successfully induced contralateral LTD that can last for at least 1 hr. We discovered the PS amplitude of DHPG-induced LTD on contralateral side was smaller than that of ipsilateral side. Another finding in our experiment was Dm field potential can be divide into synaptic (N2) and non-synaptic (P1) components. The latency of initial positive deflection of contralateral Dm lasted longer than ipsilateral Dm might be caused by the different distance of stimuli through biological tissue towards recording cathode between contralateral and ipsilateral side. Furthermore, by real-time polymerase chain reaction (real-time PCR), we observed the tendency of higher NMDAR1a mRNA expression in the left telencephalon than in right telencephalon. In conclusion, our results suggested that the connection between Dl-Dm divisions in the telencephalon of zebrafish possess synaptic plasticity, and the feasibility of using electrophysiological techniques to study neural mechanisms underlying cerebral lateralization in zebrafish.

    Abbreviation Table 3 中文摘要 5 Abstract 7 1. Introduction 10 1.1. Zebrafish 10 1.2. Cerebral lateralization 12 1.3. Teleost fish telencephalon 14 1.3.1 Anatomical structure of telencephalon 14 1.3.2 Connections of telencephalon 15 1.3.3 The role of telencephalon in learning and memory 16 1.4. Synaptic plasticity 17 1.4.1 Long-term potentiation (LTP) 17 1.4.2 Long-term depression (LTD) 19 2. Research aim 21 3. Materials and methods 22 3.1. Experimental animals 22 3.2. Brain slice preparation 22 3.3. Electrophysiological recording 23 3.4. Drug application 24 3.5. Real-time polymerase chain reaction (q-PCR) 24 RNA extraction 25 RNA reverse transcription 25 3.6. Statistical analysis 28 4. Results 29 4.1. Excitatory postsynaptic potentials in Dm division of the telencephalon recorded by multi-electrode arrays (MED64) 29 4.2. Dl-evoked long-term potentiation (LTP) in Dm division of contralateral side 30 High frequency stimulation (HFS)-induced LTP 30 4.3. Dl-evoked long-term depression (LTD) in Dm division of contralateral side 36 4.3.1. Low frequency stimulation (LFS)-induced LTD 36 4.3.2. DHPG-induced long-term depression 38 4.4. Characteristics of field potentials of Dl-evoked field potentials in Dm division of contralateral side 40 Excitatory postsynaptic potentials in Dm division of contralateral side of the telencephalon 40 4.5. NMDA receptor distribution of left and right hemisphere of telencephalon 43 5. Discussion 44 6. Reference 52 7. Figures 62

    Abrahams S, Pickering A, Polkey CE, Morris RG. 1997. Spatial memory deficits in patients with unilateral damage to the right hippocampal formation. Neuropsychologia 35: 11-24
    Akhondzadeh S, Stone TW. 1996. Glutamate-independent long term depression in rat hippocampus by activation gabaa receptors. Life Sci 58: 1024-30
    Alvarez EO, Ruarte MB. 2002. Histaminergic neurons of the ventral hippocampus and the baso-lateral amygdala of the rat: Functional interaction on memory and learning mechanisms. Behav Brain Res 128: 81-90
    Andersson MA, Ek F, Olsson R. 2015. Using visual lateralization to model learning and memory in zebrafish larvae. Sci Rep 5: 8667
    Andrew RJ, Tommasi L, Ford N. 2000. Motor control by vision and the evolution of cerebral lateralization. Brain Lang 73: 220-35
    Barriga EH, Trainor PA, Bronner M, Mayor R. 2015. Animal models for studying neural crest development: Is the mouse different? Development 142: 1555-60
    Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE. 2000. Synaptic plasticity in the human dentate gyrus. J Neurosci 20: 7080-6
    Biava PM, Canaider S, Facchin F, Bianconi E, Ljungberg L, Rotilio D, Burigana F, Ventura C. 2015. Stem cell differentiation stage factors from zebrafish embryo: A novel strategy to modulate the fate of normal and pathological human (stem) cells. Curr Pharm Biotechnol 16: 782-92
    Bisazza A, Rogers LJ, Vallortigara G. 1998. The origins of cerebral asymmetry: A review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev 22: 411-26
    Bliss TV, Gardner-Medwin AR. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol 232: 357-74
    Bliss TV, Lomo T. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232: 331-56
    Bonati B, Csermely D, Romani R. 2008. Lateralization in the predatory behaviour of the common wall lizard (podarcis muralis). Behav Processes 79: 171-4
    Braford MR, Jr. 1995. Comparative aspects of forebrain organization in the ray-finned fishes: Touchstones or not? Brain Behav Evol 46: 259-74
    Brager DH, Johnston D. 2007. Plasticity of intrinsic excitability during long-term depression is mediated through mglur-dependent changes in i(h) in hippocampal ca1 pyramidal neurons. J Neurosci 27: 13926-37
    Bundschuh ST, Zhu P, Scharer YP, Friedrich RW. 2012. Dopaminergic modulation of mitral cells and odor responses in the zebrafish olfactory bulb. J Neurosci 32: 6830-40
    Cerda J, Conrad M, Markl J, Brand M, Herrmann H. 1998. Zebrafish vimentin: Molecular characterization, assembly properties and developmental expression. Eur J Cell Biol 77: 175-87
    Chirwa S, Mack J, Park R, Dennis K, Aduonum A. 2001. An in vivo model for investigating bilateral synaptic plasticity across ca3/ca1 synapses in guinea pig dorsal hippocampus. J Neurosci Methods 110: 25-30
    Collingridge GL, Randall AD, Davies CH, Alford S. 1992. The synaptic activation of nmda receptors and ca2+ signalling in neurons. Ciba Found Symp 164: 162-71; discussion 72-5
    Cox JA, Kucenas S, Voigt MM. 2005. Molecular characterization and embryonic expression of the family of n-methyl-d-aspartate receptor subunit genes in the zebrafish. Dev Dyn 234: 756-66
    Cunliffe VT. 2015. Building a zebrafish toolkit for investigating the pathobiology of epilepsy and identifying new treatments for epileptic seizures. J Neurosci Methods
    Dadda M, Domenichini A, Piffer L, Argenton F, Bisazza A. 2010. Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206: 208-15
    Dadda M, Zandona E, Agrillo C, Bisazza A. 2009. The costs of hemispheric specialization in a fish. Proc Biol Sci 276: 4399-407
    Darland T, Dowling JE. 2001. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proc Natl Acad Sci U S A 98: 11691-6
    Debanne D, Thompson SM. 1996. Associative long-term depression in the hippocampus in vitro. Hippocampus 6: 9-16
    Dinday MT, Baraban SC. 2015. Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of dravet syndrome(1,2,3). eNeuro 2
    Duecker F, Formisano E, Sack AT. 2013. Hemispheric differences in the voluntary control of spatial attention: Direct evidence for a right-hemispheric dominance within frontal cortex. J Cogn Neurosci 25: 1332-42
    El-Gaby M, Shipton OA, Paulsen O. 2015. Synaptic plasticity and memory: New insights from hippocampal left-right asymmetries. Neuroscientist 21: 490-502
    Fitzjohn SM, Kingston AE, Lodge D, Collingridge GL. 1999. Dhpg-induced ltd in area ca1 of juvenile rat hippocampus; characterisation and sensitivity to novel mglu receptor antagonists. Neuropharmacology 38: 1577-83
    Fitzjohn SM, Palmer MJ, May JE, Neeson A, Morris SA, Collingridge GL. 2001. A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol 537: 421-30
    Floel A, Poeppel D, Buffalo EA, Braun A, Wu CW, Seo HJ, Stefan K, Knecht S, Cohen LG. 2004. Prefrontal cortex asymmetry for memory encoding of words and abstract shapes. Cereb Cortex 14: 404-9
    Folgueira M, Anadon R, Yanez J. 2004. An experimental study of the connections of the telencephalon in the rainbow trout (oncorhynchus mykiss). I: Olfactory bulb and ventral area. J Comp Neurol 480: 180-203
    Gaiarsa JL, Ben-Ari Y. 2006. Long-term plasticity at inhibitory synapses: A phenomenon that has been overlooked In The dynamic synapse: Molecular methods in ionotropic receptor biology, ed. JT Kittler, SJ Moss. Boca Raton (FL)
    Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. 2012. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Comp Neurol 520: 633-55
    Gerlai R, Lahav M, Guo S, Rosenthal A. 2000. Drinks like a fish: Zebra fish (danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67: 773-82
    Glikmann-Johnston Y, Saling MM, Chen J, Cooper KA, Beare RJ, Reutens DC. 2008. Structural and functional correlates of unilateral mesial temporal lobe spatial memory impairment. Brain 131: 3006-18
    Gomez Y, Vargas JP, Portavella M, Lopez JC. 2006. Spatial learning and goldfish telencephalon nmda receptors. Neurobiol Learn Mem 85: 252-62
    Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A. 2013. Two distinct forms of functional lateralization in the human brain. Proc Natl Acad Sci U S A 110: E3435-44
    Greengard P, Jen J, Nairn AC, Stevens CF. 1991. Enhancement of the glutamate response by camp-dependent protein kinase in hippocampal neurons. Science 253: 1135-8
    Guo S. 2004. Linking genes to brain, behavior and neurological diseases: What can we learn from zebrafish? Genes Brain Behav 3: 63-74
    Harris EW, Ganong AH, Cotman CW. 1984. Long-term potentiation in the hippocampus involves activation of n-methyl-d-aspartate receptors. Brain Res 323: 132-7
    Henze DA, Urban NN, Barrionuevo G. 1997. Origin of the apparent asynchronous activity of hippocampal mossy fibers. J Neurophysiol 78: 24-30
    Hosaka R, Nakajima T, Aihara K, Yamaguchi Y, Mushiake H. 2015. Arm-use dependent lateralization of gamma and beta oscillations in primate medial motor areas. Neural Netw 62: 62-6
    Hsieh JY, Ulrich B, Issa FA, Wan J, Papazian DM. 2014. Rapid development of purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish. Front Neural Circuits 8: 147
    Huang CC, Liang YC, Hsu KS. 2001. Characterization of the mechanism underlying the reversal of long term potentiation by low frequency stimulation at hippocampal ca1 synapses. J Biol Chem 276: 48108-17
    Ingham PW. 1997. Zebrafish genetics and its implications for understanding vertebrate development. Hum Mol Genet 6: 1755-60
    Jin I, Hawkins RD. 2003. Presynaptic and postsynaptic mechanisms of a novel form of homosynaptic potentiation at aplysia sensory-motor neuron synapses. J Neurosci 23: 7288-97
    Kakegawa W, Yamada N, Iino M, Kameyama K, Umeda T, Tsuzuki K, Ozawa S. 2002. Postsynaptic expression of a new calcium pathway in hippocampal ca3 neurons and its influence on mossy fiber long-term potentiation. J Neurosci 22: 4312-20
    Kanterewicz BI, Urban NN, McMahon DB, Norman ED, Giffen LJ, Favata MF, Scherle PA, Trzskos JM, Barrionuevo G, Klann E. 2000. The extracellular signal-regulated kinase cascade is required for nmda receptor-independent ltp in area ca1 but not area ca3 of the hippocampus. J Neurosci 20: 3057-66
    Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I. 2003. Asymmetrical allocation of nmda receptor epsilon2 subunits in hippocampal circuitry. Science 300: 990-4
    Keller SS, Roberts N, Garcia-Finana M, Mohammadi S, Ringelstein EB, Knecht S, Deppe M. 2011. Can the language-dominant hemisphere be predicted by brain anatomy? J Cogn Neurosci 23: 2013-29
    Kikuchi S, Fujimoto K, Kitagawa N, Fuchikawa T, Abe M, Oka K, Takei K, Tomita M. 2003. Kinetic simulation of signal transduction system in hippocampal long-term potentiation with dynamic modeling of protein phosphatase 2a. Neural Netw 16: 1389-98
    Kikuchi Y, Segawa H, Tokumoto M, Tsubokawa T, Hotta Y, Uyemura K, Okamoto H. 1997. Ocular and cerebellar defects in zebrafish induced by overexpression of the lim domains of the islet-3 lim/homeodomain protein. Neuron 18: 369-82
    Kim JJ, DeCola JP, Landeira-Fernandez J, Fanselow MS. 1991. N-methyl-d-aspartate receptor antagonist apv blocks acquisition but not expression of fear conditioning. Behav Neurosci 105: 126-33
    Kim L, He L, Maaswinkel H, Zhu L, Sirotkin H, Weng W. 2014. Anxiety, hyperactivity and stereotypy in a zebrafish model of fragile x syndrome and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 55: 40-9
    Kim YJ, Nam RH, Yoo YM, Lee CJ. 2004. Identification and functional evidence of gabaergic neurons in parts of the brain of adult zebrafish (danio rerio). Neurosci Lett 355: 29-32
    Knafo S, Venero C, Sanchez-Puelles C, Pereda-Perez I, Franco A, Sandi C, Suarez LM, Solis JM, Alonso-Nanclares L, Martin ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, Defelipe J, Esteban JA. 2012. Facilitation of ampa receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol 10: e1001262
    Kovacs KA, Steullet P, Steinmann M, Do KQ, Magistretti PJ, Halfon O, Cardinaux JR. 2007. Torc1 is a calcium- and camp-sensitive coincidence detector involved in hippocampal long-term synaptic plasticity. Proc Natl Acad Sci U S A 104: 4700-5
    Lepesant JA. 2015. The promises of neurodegenerative disease modeling. C R Biol 338: 584-92
    Lu KT, Wu SP, Gean PW. 1999. Promotion of forskolin-induced long-term potentiation of synaptic transmission by caffeine in area ca1 of the rat hippocampus. Chin J Physiol 42: 249-53
    Luchiari AC, Salajan DC, Gerlai R. 2015. Acute and chronic alcohol administration: Effects on performance of zebrafish in a latent learning task. Behav Brain Res 282: 76-83
    Lynch G, Kessler M, Halpain S, Baudry M. 1983. Biochemical effects of high-frequency synaptic activity studied with in vitro slices. Fed Proc 42: 2886-90
    Marsden WN. 2013. Synaptic plasticity in depression: Molecular, cellular and functional correlates. Prog Neuropsychopharmacol Biol Psychiatry 43: 168-84
    Massey PV, Bashir ZI. 2007. Long-term depression: Multiple forms and implications for brain function. Trends Neurosci 30: 176-84
    Maximino C, Lima MG, Oliveira KR, Batista Ede J, Herculano AM. 2013. "Limbic associative" and "autonomic" amygdala in teleosts: A review of the evidence. J Chem Neuroanat 48-49: 1-13
    Miklosi A, Andrew RJ. 1999. Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105: 199-205
    Morris RG. 1989. Synaptic plasticity and learning: Selective impairment of learning rats and blockade of long-term potentiation in vivo by the n-methyl-d-aspartate receptor antagonist ap5. J Neurosci 9: 3040-57
    Morris RG. 2013. Nmda receptors and memory encoding. Neuropharmacology 74: 32-40
    Morris RG, Anderson E, Lynch GS, Baudry M. 1986. Selective impairment of learning and blockade of long-term potentiation by an n-methyl-d-aspartate receptor antagonist, ap5. Nature 319: 774-6
    Moult PR, Gladding CM, Sanderson TM, Fitzjohn SM, Bashir ZI, Molnar E, Collingridge GL. 2006. Tyrosine phosphatases regulate ampa receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. J Neurosci 26: 2544-54
    Moura AC. 2015. Hand preference during tool use in wild bearded capuchins. Folia Primatol (Basel) 86: 411-9
    Mueller T, Dong Z, Berberoglu MA, Guo S. 2011. The dorsal pallium in zebrafish, danio rerio (cyprinidae, teleostei). Brain Res 1381: 95-105
    Mueller T, Guo S. 2009. The distribution of gad67-mrna in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J Comp Neurol 516: 553-68
    Mueller T, Wullimann MF. 2009. An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav Evol 74: 30-42
    Nam RH, Kim W, Lee CJ. 2004. Nmda receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 370: 248-51
    Ng MC, Tang TH, Ko MC, Wu YJ, Hsu CP, Yang YL, Lu KT. 2012. Stimulation of the lateral division of the dorsal telencephalon induces synaptic plasticity in the medial division of adult zebrafish. Neurosci Lett 512: 109-13
    Ng MC, Yang YL, Lu KT. 2013. Behavioral and synaptic circuit features in a zebrafish model of fragile x syndrome. PLoS One 8: e51456
    Nikinmaa M. 2002. Oxygen-dependent cellular functions--why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A Mol Integr Physiol 133: 1-16
    Okazaki YO, De Weerd P, Haegens S, Jensen O. 2014. Hemispheric lateralization of posterior alpha reduces distracter interference during face matching. Brain Res 1590: 56-64
    Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, Asrican B, Lisman J. 2004. Forskolin-induced ltp in the ca1 hippocampal region is nmda receptor dependent. J Neurophysiol 91: 1955-62
    Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL. 1997. The group i mglu receptor agonist dhpg induces a novel form of ltd in the ca1 region of the hippocampus. Neuropharmacology 36: 1517-32
    Pockett S, Brookes NH, Bindman LJ. 1990. Long-term depression at synapses in slices of rat hippocampus can be induced by bursts of postsynaptic activity. Exp Brain Res 80: 196-200
    Portavella M, Torres B, Salas C. 2004. Avoidance response in goldfish: Emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24: 2335-42
    Portavella M, Vargas JP, Torres B, Salas C. 2002. The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57: 397-9
    Rawlins JN, Lyford GL, Seferiades A, Deacon RM, Cassaday HJ. 1993. Critical determinants of nonspatial working memory deficits in rats with conventional lesions of the hippocampus or fornix. Behav Neurosci 107: 420-33
    Riolo-Quinn L. 1991. Relationship of hand preference to accuracy on a thumb-positioning task. Percept Mot Skills 73: 267-73
    Rodriguez F, Duran E, Gomez A, Ocana FM, Alvarez E, Jimenez-Moya F, Broglio C, Salas C. 2005. Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66: 365-70
    Roosing S, Lamers IJ, de Vrieze E, van den Born LI, Lambertus S, Arts HH, Group PBS, Peters TA, Hoyng CB, Kremer H, Hetterschijt L, Letteboer SJ, van Wijk E, Roepman R, den Hollander AI, Cremers FP. 2014. Disruption of the basal body protein poc1b results in autosomal-recessive cone-rod dystrophy. Am J Hum Genet 95: 131-42
    Rupp B, Wullimann MF, Reichert H. 1996. The zebrafish brain: A neuroanatomical comparison with the goldfish. Anat Embryol (Berl) 194: 187-203
    Saint-Amant L, Drapeau P. 2001. Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling. Neuron 31: 1035-46
    Salas C, Broglio C, Duran E, Gomez A, Ocana FM, Jimenez-Moya F, Rodriguez F. 2006. Neuropsychology of learning and memory in teleost fish. Zebrafish 3: 157-71
    Schnabel R, Kilpatrick IC, Collingridge GL. 1999. An investigation into signal transduction mechanisms involved in dhpg-induced ltd in the ca1 region of the hippocampus. Neuropharmacology 38: 1585-96
    Sertori R, Trengove M, Basheer F, Ward AC, Liongue C. 2015. Genome editing in zebrafish: A practical overview. Brief Funct Genomics
    Shamay-Ramot A, Khermesh K, Porath HT, Barak M, Pinto Y, Wachtel C, Zilberberg A, Lerer-Goldshtein T, Efroni S, Levanon EY, Appelbaum L. 2015. Fmrp interacts with adar and regulates rna editing, synaptic density and locomotor activity in zebrafish. PLoS Genet 11: e1005702
    Shinohara Y, Hirase H. 2009. Size and receptor density of glutamatergic synapses: A viewpoint from left-right asymmetry of ca3-ca1 connections. Front Neuroanat 3: 10
    Shipton OA, El-Gaby M, Apergis-Schoute J, Deisseroth K, Bannerman DM, Paulsen O, Kohl MM. 2014. Left-right dissociation of hippocampal memory processes in mice. Proc Natl Acad Sci U S A 111: 15238-43
    Silkis I. 2000. The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. I. Modification rules for excitatory and inhibitory synapses in the striatum. Biosystems 57: 187-96
    Sovrano VA. 2004. Visual lateralization in response to familiar and unfamiliar stimuli in fish. Behav Brain Res 152: 385-91
    Sovrano VA, Andrew RJ. 2006. Eye use during viewing a reflection: Behavioural lateralisation in zebrafish larvae. Behav Brain Res 167: 226-31
    Stancher G, Clara E, Regolin L, Vallortigara G. 2006. Lateralized righting behavior in the tortoise (testudo hermanni). Behav Brain Res 173: 315-9
    Streisinger G, Walker C, Dower N, Knauber D, Singer F. 1981. Production of clones of homozygous diploid zebra fish (brachydanio rerio). Nature 291: 293-6
    Tabassum N, Tai H, Jung DW, Williams DR. 2015. Fishing for nature's hits: Establishment of the zebrafish as a model for screening antidiabetic natural products. Evid Based Complement Alternat Med 2015: 287847
    Tzeng DW, Lin MH, Chen BY, Chen YC, Chang YC, Chow WY. 2007. Molecular and functional studies of tilapia (oreochromis mossambicus) nmda receptor nr1 subunits. Comp Biochem Physiol B Biochem Mol Biol 146: 402-11
    Villani L, Zironi I, Guarnieri T. 1996. Telencephalo-habenulo-interpeduncular connections in the goldfish: A dii study. Brain Behav Evol 48: 205-12
    Vogel G. 2008. Developmental biology. Lights! Camera! Action! Zebrafish embryos caught on film. Science 322: 176
    Watkins J, Miklosi A, Andrew RJ. 2004. Early asymmetries in the behaviour of zebrafish larvae. Behav Brain Res 151: 177-83
    Wittbrodt J, Rosa FM. 1994. Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: The role of maternal activin. Genes Dev 8: 1448-62
    Wu J, Rush A, Rowan MJ, Anwyl R. 2001. Nmda receptor- and metabotropic glutamate receptor-dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro. J Physiol 533: 745-55
    Yao-Ju Wu. 2008. Asymmetric behavior of zebrafish in spatial memory learning program - discussing the effects of brain lateralization
    Xiao MY, Zhou Q, Nicoll RA. 2001. Metabotropic glutamate receptor activation causes a rapid redistribution of ampa receptors. Neuropharmacology 41: 664-71
    Xu X, Bazner J, Qi M, Johnson E, Freidhoff R. 2003. The role of telencephalic nmda receptors in avoidance learning in goldfish (carassius auratus). Behav Neurosci 117: 548-54
    Yang Y, Ma H, Zhou J, Liu J, Liu W. 2014. Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96: 146-54
    Yao C, Vanderpool KG, Delfiner M, Eddy V, Lucaci AG, Soto-Riveros C, Yasumura T, Rash JE, Pereda AE. 2014. Electrical synaptic transmission in developing zebrafish: Properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 112: 2102-13
    Zala SM, Maattanen I. 2013. Social learning of an associative foraging task in zebrafish. Naturwissenschaften 100: 469-72

    下載圖示
    QR CODE