簡易檢索 / 詳目顯示

研究生: 古芷蓉
Ku, Chih-Jung
論文名稱: 重複式工程設計教學模組對職前科技教師的STEM教學概念與自我效能之影響-以「抗震結構設計」主題為例
The Effect of Repetitive Engineering Design Instructional Module on Pre-service Technology Teachers’ STEM Teaching Concepts and Self-efficacy: An Example of Earthquake-Resistant Structure Design
指導教授: 林坤誼
Lin, Kuen-Yi
口試委員: 朱耀明
Chu, Yao-Ming
李隆盛
Lee, Lung-Sheng
許瑛玿
Hsu, Ying-Shao
游光昭
Yu, Kuang-Chao
林坤誼
Lin, Kuen-Yi
口試日期: 2023/10/30
學位類別: 博士
Doctor
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 211
中文關鍵詞: STEM教育師資培育科技教育工程設計流程逆向工程
英文關鍵詞: STEM education, teacher education, technology education, engineering design process, reverse engineering
研究方法: 參與觀察法調查研究深度訪談法半結構式訪談法前實驗研究法混合研究語意流程圖析法
DOI URL: http://doi.org/10.6345/NTNU202301829
論文種類: 學術論文
相關次數: 點閱:113下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於發展以抗震結構設計為主題,且符合臺灣科技師資培育教學現場需求的重複式工程設計教學模組,結合工程設計流程與逆向工程策略,並透過建構、反思、探討、以及實踐四步驟,增進職前科技教師於STEM教學中應用工程設計流程引導學生整合應用不同學科知能的概念,並提高他們的STEM教學自我效能。為檢視模組之實施成效,本研究採用嚴謹的多重檢核設計混合研究方法,以臺灣某一科技師資培育機構的10位職前科技教師為研究對象,透過前實驗設計研究來進行探究。在質性方面以深度訪談配合修正式後設重聽法蒐集資料,再利用語意流程圖析法針對職前科技教師的認知結構進行剖析,瞭解他們STEM教學概念的發展情形。量化方面則以問卷調查方式探究職前科技教師的STEM教學自我效能表現。依據研究結果與討論,本研究提出以下五點結論與建議:(1)重複式工程設計教學模組有助於職前科技教師的STEM教學概念認知結構發展。他們的STEM教學概念認知結構概念總數與概念連結總數得到提升,顯示藉由本研究發展之教學模組,職前科技教師在應用工程設計流程引導學生整合應用STEM知能的教學專業知識上能獲得一定程度的成長。(2)參與研究的職前科技教師於STEM教學自我效能前測的表現良好,表示他們在該師資培育機構的培育下,對於自己進行STEM教學的專業知能具有相當程度的自信。同時因為潛在天花板效應,使得參與研究的職前科技教師在後測得分的進步幅度上受到限制。(3)重複式工程設計教學模組包含:經歷、反思、連結、以及實踐四個階段。透過整合重複式工程設計流程和逆向工程策略讓職前科技教師以學習者的身份經歷STEM學習歷程,並於第二和第三階段強化反思,促使他們轉換身份為未來教師,連結自身學習經驗與未來教學實務,最後藉由安排教學實踐活動提供他們深化學習的機會。(4)未來應用重複式工程設計教學模組時,應就教學單元設計、課堂討論與反思活動、分組機制等面向進行考量與分析,提供每一位學習者平等的機會發展STEM教學概念與提升STEM教學自我效能表現。(5)後續研究可以透過不同面向來進一步驗證重複式工程設計教學模組的實施成效,例如,涵蓋更多圓的研究樣本、剖析職前教師的訊息處理策略、提升他們的認知結構發展階段、或是探討影響他們STEM教學概念與STEM教學自我效能的重要因素,此外,也可以針對教學模組在職前或在職師資培育規劃之應用進行探討。

    The purpose of this study is to develop a Repetitive Engineering Design Instructional Module with a particular focus on earthquake-resistant structure design. It integrates engineering design process and reverse engineering strategy and follows a four-step process “model, reflect, research, and practice”. The goal is to enhance pre-service technology teachers’ STEM teaching concepts to utilize the engineering design process while teaching STEM, and further increase their STEM teaching self-efficacy. This research employs a rigorous mixed-methods, involving 10 pre-service technology teachers. The qualitative data is collected through in-depth interviews and analyze using flow map method to understand pre-service technology teachers’ STEM teaching concepts. Additionally, A questionnaire survey is conducted to explore their STEM teaching self-efficacy. Based on the research findings and discussion, the following conclusions and suggestions are presented: (1) The Repetitive Engineering Design Instructional Module contributes to developing pre-service technology teachers’ STEM teaching concepts. (2) Pre-service technology teachers perform well in the pre-test of STEM teaching self-efficacy, signifying that, they possess a considerable level of confidence in designing and implementing STEM teaching. (3) The Repetitive Engineering Design Instructional Module comprises four stages: Experience, Reflect, Link, and Practice. (4) When implementing the Repetitive Engineering Design Instructional Module, educators should provide equal opportunities for all participants to develop STEM teaching concepts and enhance the STEM teaching self-efficacy. (5) Future research can further validate the effectiveness of the Repetitive Engineering Design Instructional Module through various perspectives. To sum up, this research contributes to the growing literature on cultivating teachers’ STEM teaching professional knowledge and skills. It provides valuable insights into the development of practical modules for enhancing pre-service technology teachers’ STEM teaching capabilities.

    誌  謝 i 中文摘要 iii ABSTRACT v 目  錄 vii 表  次 ix 圖  次 xi 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與研究問題 4 第三節 本研究之重要性 6 第四節 研究範圍與限制 9 第五節 重要名詞釋義 12 第二章 文獻探討 15 第一節 STEM教育與工程設計流程 15 第二節 教師進行STEM教學之現況 23 第三節 師資培育規劃與挑戰 29 第四節 重複式工程設計教學模組設計 39 第三章 研究方法 53 第一節 研究設計 53 第二節 研究對象 57 第三節 重複式工程設計教學模組 58 第四節 研究實施流程 72 第五節 研究工具 75 第六節 資料蒐集與分析 78 第四章 研究結果與討論 91 第一節 參與模組前的STEM教學的認知結構 95 第二節 參與模組後的STEM教學概念 100 第三節 參與模組前後的STEM教學概念改變 106 第四節 參與模組前後的STEM教學自我效能改變 111 第五節 研究結果整理與綜合討論 115 第六節 重複式工程設計教學模組之省思與討論 127 第五章 結論與建議 145 第一節 結論 145 第二節 建議 148 參考文獻 153 一、中文部分 153 二、外文部分 154 附 錄 179 附錄一 小組學習單 181 附錄二 STEM教學自我效能調查表 187 附錄三 語意流程圖 189 附錄四 重複式工程設計教學模組介紹 209

    一、中文部分
    Fraenkel, J. R., Wallen, N. E., & Hyun, H. H.(2021)。教育研究法:研究設計實務(楊孟麗、謝水南,譯:第三版)。心理。(原著出版於2012)
    王文科、王智弘(2020)。教育研究法。五南。
    吳明隆(2014)。論文寫作與量化研究(第四版)。五南。
    宋曜廷、潘佩妤。(2010)。混合研究在教育研究的應用。教育科學研究期刊,55(4),97-130。
    林坤誼(2018)。STEM教育在台灣推行的現況與省思。青年研究學報,21(1),1-9。
    范斯淳、游光昭(2016)。科技教育融入 STEM 課程的核心價值與實踐。教育科學研究期刊,61(2),153-183。https://doi.org/10.6209/JORIES.2016.61(2).06
    國家發展委員會(2021)。關鍵人才培育及延攬方案(110-113年)。人才政策專區。
    教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校科技領域。取自 https://www.k12ea.gov.tw/files/class_ schema/課綱/13-科技/13-1/十二年國民基本教育課程綱要國民中學暨普通型高級中等學校─科技領域.pdf
    二、外文部分
    Abdüsselam, M. S., Turan-Güntepe, E., & Durukan, Ü. G. (2022). Programming education in the frameworks of reverse engineering and theory of didactical situations. Education and Information Technologies, 1-20. https://doi.org/10.1007/s10639-021-10883-8
    Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology Design and Education, 27, 63-88. https://doi.org/10.1007/s10798-015-9341-0.
    Alharbi, H. E. (2019). An Arabic assessment tool to measure technological pedagogical and content knowledge. Computers & Education, 142. https://doi.org/10.1016/j.compedu.2019.103650
    Anderson, O. R., & Demetrius, O. J. (1993). A flow‐map method of representing cognitive structure based on respondents' narrative using science content. Journal of Research in Science Teaching, 30(8), 953-969. https://doi.org/10.1002/tea.366030081
    Ardianti, S., Sulisworo, D., Pramudya, Y., & Raharjo, W. (2020). The impact of the use of STEM education approach on the blended learning to improve student’s critical thinking skills. Universal Journal of Educational Research, 8(3B), 24-32. https://doi.org/10.13189/ujer.2020.081503
    Arshad, A. Y. M., Halim, L., & Nasri, N. M. (2021). A systematic review: Issues in implementation of integrated STEM education. Turkish Journal of Computer and Mathematics Education, 12(9), 1124-1133. https://doi.org/10. 17762/turcomat.v12i9.3418
    Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering design processes: A comparison of students and expert practitioners. Journal of Engineering Education, 96(4), 359-379. https://doi.org/10.1002/j.2168-9830.2007.tb00945.x
    Avsec, S., & Sajdera, J. (2019). Factors influencing pre-service preschool teachers’ engineering thinking: Model development and test. International Journal of Technology and Design Education, 29(5), 1105-1132.  https://doi.org/10.1007/s11191-019-00038-0
    Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (Vol. 4) (pp. 71-81). Academic Press.
    Baran, E., Canbazoglu Bilici, S., Mesutoglu, C., & Ocak, C. (2019). The impact of an out‐of‐school STEM education program on students’ attitudes toward STEM and STEM careers. School Science and Mathematics, 119(4), 223-235. https://doi.org/10.1111/ssm.12330
    Beier, M. E., Kim, M. H., Saterbak, A., Leautaud, V., Bishnoi, S., & Gilberto, J. M. (2019). The effect of authentic project‐based learning on attitudes and career aspirations in STEM. Journal of Research in Science Teaching, 56(1), 3-23. https://doi.org/10.1002/tea.21465
    Bertoni, A. (2019). A reverse engineering role-play to teach systems engineering methods. Education Sciences, 9(1), 1-13. https://doi.org/10.3390/educsci9010030
    Borrego, M., Foster, M. J., & Froyd, J. E. (2014). Systematic literature reviews in engineering education and other developing interdisciplinary fields. Journal of Engineering Education, 103(1), 45-76. https://doi.org/10.1002/jee.20038
    Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x
    Bruce-Davis, M. N., Gubbins, E. J., Gilson, C. M., Villanueva, M., Foreman, J. L., & Rubenstein, L. D. (2014). STEM high school administrators’, teachers’, and students’ perceptions of curricular and instructional strategies and practices. Journal of Advanced Academics, 25(3), 272-306. https://doi.org/10.1177/1932202X14527952.
    Bryan, L. A., Moore, T. J., Johnson, C. C. and Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton and T. J. Moore (Eds.), STEM roadmap: A framework for integration (pp. 23-37). Taylor & Francis.
    Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
    Bybee, R. W. (2013). The Case for STEM Education: Challenges and Opportunities. NSTA Press.
    Cavlazoglu, B., & Stuessy, C. (2017). Changes in science teachers’ conceptions and connections of STEM concepts and earthquake engineering. The Journal of Educational Research, 110(3), 239-254. https://doi.org/10.1080/00220671.2016.1273176.
    Chai, C. S. (2019). Teacher professional development for science, technology, engineering and mathematics (STEM) education: A review from the perspectives of technological pedagogical content (TPACK). The Asia-Pacific Education Researcher, 28(1), 5-13. https://doi.org/10.1007/s40299-018-0400-7
    Chamberlin, S. A., & Pereira, N. (2021). Differentiating engineering activities for use in a mathematics setting. In Engineering instruction for high-ability learners in K-8 classrooms (pp. 45-55). Routledge.
    Chen, Y. L., Huang, L. F., & Wu, P. C. (2021). Preservice preschool teachers’ self-efficacy in and need for STEM education professional development: STEM pedagogical belief as a mediator. Early Childhood Education Journal, 49(2), 137-147. https://doi.org/10.1007/s10643-020-01055-3
    Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: A taxonomy. IEEE software, 7(1), 13-17. https://doi.org/10.1109/52.43044
    Christian, K. B., Kelly, A. M., & Bugallo, M. F. (2021). NGSS-based teacher professional development to implement engineering practices in STEM instruction. International Journal of STEM Education, 8(1), 1-18. https://doi.org/10.1186/s40594-021-00284-1
    Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.
    Coppola, M. P. (2019). Preparing preservice elementary teachers to teach engineering: Impact on self-efficacy and outcome expectancy. School Science and Mathematics, 119, 161-170. https://doi.org/10.1111/ssm.12327
    Creswell, J. W., & Clark, V. L. P. (2017). Designing and conducting mixed methods research (3rd ed.). Sage publications.
    Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486-505. https://doi.org/10.1002/sce.21271
    Dalrymple, O. O., Sears, D. A., & Evangelou, D. (2011). The motivational and transfer potential of disassemble/analyze/assemble activities. Journal of Engineering Education, 100(4), 741-759. https://doi.org/10.1002/j.2168-9830.2011.tb00034.x
    DeCoito, I., & Myszkal, P. (2018). Connecting science instruction and teachers’ self-efficacy and beliefs in STEM education. Journal of Science Teacher Education, 29(6), 485-503. https://doi.org/10.1080/1046560X.2018.1473748
    Denzin, N. K. (1978). The logic of naturalistic inquiry. In N. K. Denzin (Eds.), Sociological methods: A sourcebook. McGraw-Hill.
    Denzin, N. K., & Lincoln, Y. S. (Eds.). (2011). The Sage handbook of qualitative research (4th ed.). Sage.
    Diefes-Dux, H., Bowman, K., Zawojewski, J., & Hjalmarson, M. (2006). Quantifying aluminum crystal size. Part 1: The model eliciting activity. Journal of STEM Education, 7(1), 51-63.
    El-Deghaidy, H., Mansour, N., Alzaghibi, M. & Alhammad, K. (2017). Context of STEM integration in schools: views from in-service science teachers. EURASIA Journal of Mathematics, Science, and Technology Education, 13(6), 2459-2484. https://doi.org/10.12973/eurasia.2017.01235a.
    English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 1-8. https://doi.org/10.1186/s40594-016-0036-1
    English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5-24. https://doi.org/10.1007/s10763-017-9802-x
    Fan, S. C., & Yu, K. C. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27(1), 107-129. https://doi.org/10.1007/s10798-015-9328-x
    Fan, S. C., Yu, K. C., & Lin, K. Y. (2021). A framework for implementing an engineering-focused STEM curriculum. International Journal of Science and Mathematics Education, 19(8), 1523-1541. https://doi.org/10.1007/s10763-020-10129-y
    Geng, J., Jong, M. S. Y., & Chai, C. S. (2019). Hong Kong teachers’ self-efficacy and concerns about STEM education. The Asia-Pacific Education Researcher, 28(1), 35-45. https://doi.org/10.1007/s40299-018-0414-1
    Geren, N. E. C. D. E. T., Bayramoğlu, M., & Eşme, U. (2007). Improvement of a low-cost water jet machining intensifier using reverse engineering and redesign methodology. Journal of Engineering Design, 18(1), 13-37. https://doi.org/10.1080/09544820600650928
    Goodpaster, K. P., Adedokun, O. A., & Weaver, G. C. (2012). Teachers' perceptions of rural STEM teaching: Implications for rural teacher retention. The Rural Educator, 33(3), 9-22. https://doi.org/10.35608/ruraled.v33i3.408
    Grantham, K., Okudan Kremer, G. E., Simpson, T. W., & Ashour, O. (2013). A Study on Situated Cognition: Product Dissection’s Effect on Redesign Activities. Advances in Engineering Education, 3(4), 1-15.
    Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. Educational Technology Research and Development, 29(2), 75-91. https://doi.org/10.1007/BF02766777
    Halim, L., & Meerah, S. M. M. (2002). Science trainee teachers' pedagogical content knowledge and its influence on physics teaching. Research in Science & Technological Education, 20(2), 215-225. https://doi.org/10.1080/0263514022000030462
    Han, H. J., & Shim, K. C. (2019). Development of an engineering design process-based teaching and learning model for scientifically gifted students at the Science Education Institute for the Gifted in South Korea. Asia-Pacific Science Education, 5(1), 1-18. https://doi.org/10.1186/s41029-019-0047-6
    Han, J., Kelley, T., & Knowles, J. G. (2021). Factors influencing student STEM learning: Self-efficacy and outcome expectancy, 21st century skills, and career awareness. Journal for STEM Education Research, 4(2), 117-137. https://doi.org/10.1007/s41979-021-00053-3
    Hancock, E. S., & Gallard, A. J. (2004). Preservice science teachers' beliefs about teaching and learning: The influence of K-12 field experiences. Journal of Science Teacher Education, 15(4), 281-291. https://doi.org/10.1023/B:JSTE.0000048331.17407.f5
    Herro, D., & Quigley, C. (2017). Exploring teachers’ perceptions of STEAM teaching through professional development: implications for teacher educators. Professional Development in Education, 43(3), 416-438. https://doi.org/10.1080/19415257.2016.1205507
    Hess, J. L., & Sorge, B., & Feldhaus, C. (2016, June), The Efficacy of Project Lead the Way: A Systematic Literature Review Paper. ASEE Annual Conference & Exposition, New Orleans, Louisiana. https://doi.org/10.18260/p.26151
    Hiğde, E., & Aktamış, H. (2022). The effects of STEM activities on students’ STEM career interests, motivation, science process skills, science achievement and views. Thinking Skills and Creativity, 43. https://doi.org/10.1016/j.tsc.2022.101000
    Hoeg, D. G., & Bencze, J. L. (2017). Values underpinning STEM education in the USA: An analysis of the Next Generation Science Standards. Science Education, 101(2), 278-301. https://doi.org/10.1002/sce.21260
    Hsu, Y. L., Liang, C. Y., & Hsu, S. K. (2014). Learning model of intrinsic Motivation and self-efficacy as a mediator to predict the scientific imagination. Chinese Journal of Science Education, 22(4), 389-412. https://doi.org/10.6173/CJSE.2014. 2204.03
    Huang, B., Jong, M. S. Y., Tu, Y. F., Hwang, G. J., Chai, C. S., & Jiang, M. Y. C. (2022). Trends and exemplary practices of STEM teacher professional development programs in K-12 contexts: A systematic review of empirical studies. Computers & Education, 189.  https://doi.org/10.1016/j.compedu.2022.104577
    Hynes, M. M. (2012). Middle-school teachers’ understanding and teaching of the engineering design process: A look at subject matter and pedagogical content knowledge. International Journal of Technology and Design Education, 22(3), 345-360. https://doi.org/10.1007/s10798-010-9142-4
    International Technology and Engineering Educators Association [ITEEA]. (2020). Standards for technological and engineering Literacy: The role of technology and engineering in STEM education. https://www.iteea.org/stel.aspx
    International Technology Educational Association [ITEA]. (2000). Standards for Technological Literacy: Content for the Study of Technology. http://www.iteawww.org/TAA/PublicationsMainPage.htm/
    Jackson, C., Mohr-Schroeder, M. J., Bush, S. B., Maiorca, C., Roberts, T., Yost, C., & Fowler, A. (2021). Equity-oriented conceptual framework for K-12 STEM literacy. International Journal of STEM Education, 8(1), 1-16. https://doi.org/10.1186/s40594-021-00294-z
    Jen, T. H., Yeh, Y. F., Hsu, Y. S., Wu, H. K., & Chen, K. M. (2016). Science teachers’ TPACK-Practical: Standard-setting using an evidence-based approach. Computers & Education, 95, 45-62. https://doi.org/10.1016/j.compedu.2015.12.009
    Kelley, T. R. (2008). Cognitive Processes of Students Participating in Engineering-Focused Design Instruction. Journal of Technology Education, 19(2), 50-64.
    Kelley, T. R. (2010). Optimization, an important stage of engineering design. The Technology Teacher, 69(5), 18-23.
    Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(1), 1-11. https://doi.org/10.1186/s40594-016-0046-z
    Kelley, T. R., Capobianco, B. M., & Kaluf, K. J. (2015). Concurrent think-aloud protocols to assess elementary design students. International Journal of Technology and Design Education, 25(4), 521-540. https://doi.org/10.1007/s10798-014-9291-y
    Kelley, T. R., Knowles, J. G., Han, J., & Sung, E. (2019). Creating a 21st century skills survey instrument for high school students. American Journal of Educational Research, 7(8), 583-590. https://doi.org/10.12691/education-7-8-7
    Kelley, T. R., Knowles, J. G., Holland, J. D., & Han, J. (2020). Increasing high school teachers self-efficacy for integrated STEM instruction through a collaborative community of practice. International Journal of STEM Education, 7(1), 1-13. https://doi.org/10.1186/s40594-020-00211-w
    Ku, C. J., Lin, K. Y., Mak, C. T., Hsu, Y. S., & Kwon, H. (2022, December 7-10). Technology Teachers’ Readiness from Affective, Behavioral, and Cognitive Aspects and Self-Efficacy in STEM Education. 11th DATTArc-ICTE-TENZ-ITEEA 2022 Conference, Gold Coast, Australia.
    Ku, C. J., Loh, W. L. L., Lin, K. Y., & John Williams, P. (2021). Development of an instrument for exploring preservice technology teachers’ maker‐based technological pedagogical content knowledge. British Journal of Educational Technology, 52(2), 552-568. https://doi.org/10.1111/bjet.13039
    Ladachart, L., Cholsin, J., Kwanpet, S., Teerapanpong, R., Dessi, A., Phuangsuwan, L., & Phothong, W. (2022). Ninth-grade students’ perceptions on the design-thinking mindset in the context of reverse engineering. International Journal of Technology and Design Education, 32(5), 2445-2465. https://doi.org/10.1007/s10798-021-09701-6
    Lau, W. W., & Jong, M. S. (2022). Typology of teachers’ stages of concern for STEM education. Research in Science & Technological Education, 1-19. https://doi.org/10.1080/02635143.2022.2064447
    Lee, M. H., Chai, C. S., & Hong, H. Y. (2019). STEM education in Asia Pacific: Challenges and development. The Asia-Pacific Education Researcher, 28(1), 1-4. https://doi.org/10.1007/s40299-018-0424-z
    Lehman, J. D., Kim, W., & Harris, C. (2014). Collaborations in a community of practice working to integrate engineering design in elementary science education. Journal of STEM Education: Innovations and Research, 15(3), 21-28. https://www.learntechlib.org/p/151109/
    Lesseig, K., Slavit, D., Nelson, T. H., & Seidel, R. A. (2016). Supporting middle school teachers’ implementation of STEM design challenges. School Science and Mathematics, 116(4), 177-188. https://doi.org/10.1111/ssm.12172.
    Li, Y., Wang, K., Xiao, Y., & Froyd, J. E. (2020). Research and trends in STEM education: A systematic review of journal publications. International Journal of STEM Education, 7(1), 1-16. https://doi.org/10.1186/s40594-020-00207-6
    Lin, K. Y., & Williams, P. J. (2016). Taiwanese preservice teachers’ science, technology, engineering, and mathematics teaching intention. International Journal of Science and Mathematics Education, 14(6), 1021-1036. https://doi.org/10.1007/s10763-015-9645-2
    Lin, K. Y., Wu, Y. T., Hsu, Y. T., & Williams, P. J. (2021). Effects of infusing the engineering design process into STEM project-based learning to develop preservice technology teachers’ engineering design thinking. International Journal of STEM Education, 8(1), 1-15. https://doi.org/10.1186/s40594-020-00258-9
    Lin, K.-Y., Hsiao, H.-S., Chang, Y.-S., Chien, Y.-H., & Wu, Y.-T. (2018). The Effectiveness of Using 3D Printing Technology in STEM Project-Based Learning Activities. Eurasia Journal of Mathematics, Science and Technology Education, 14(12), 1-13. https://doi.org/10.29333/ejmste/97189
    Lin, K.-Y., Lu, S.-C., Hsiao, H.-H., Kao, C.-P., & Williams, P. J. (2023). Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling. Interactive Learning Environments, 31(5), 2884-2898. https://doi.org/10.1080/10494820.2021.1913607
    Lo, C. K. (2021). Design Principles for Effective Teacher Professional Development in Integrated STEM Education. Educational Technology & Society, 24(4), 136-152. https://www.jstor.org/stable/48629251
    Lockhart, S. D. & Johnson, C. (1996). Engineering design communication: Conveying design through graphics. Pearson College Div.
    Loughran, J., Mulhall, P., & Berry, A. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391. https://doi.org/10.1002/tea.20007
    Maeng, J. L., Whitworth, B. A., Gonczi, A. L., Navy, S. L., & Wheeler, L. B. (2017). Elementary science teachers’ integration of engineering design into science instruction: results from a randomised controlled trial. International Journal of Science Education, 39(11), 1529-1548. https://doi.org/10.1080/09500693.2017.1340688
    Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: a systematic literature review. International Journal of STEM Education, 6(1), 1-16. https://doi.org/10.1186/s40594-018-0151-2
    Marshall, C. & Rossman, G. (2006). Designing qualitative research (6th Ed.). Sage.
    Marulcu, I., & Barnett, M. (2016). Impact of an engineering design-based curriculum compared to an inquiry-based curriculum on fifth graders’ content learning of simple machines. Research in Science & Technological Education, 34(1), 85-104. https://doi.org/10.1080/02635143.2015.1077327
    McLure, F. I., Tang, K.-S., & Williams, P. J. (2022). What do integrated STEM projects look like in middle school and high school classrooms? A systematic literature review of empirical studies of iSTEM projects. International Journal of STEM Education, 9(1). https://doi.org/10.1186/s40594-022-00390-8
    Mentzer, N., Huffman, T., & Thayer, H. (2014). High school student modeling in the engineering design process. International Journal of Technology and Design Education, 24(3), 293-316. https://doi.org/10.1007/s10798-013-9260-x
    Merrill, C., Custer, R. L., Daugherty, J., Westrick, M., & Zeng, Y. (2009). Delivering core engineering concepts to secondary level students. Journal of Technology Education, 20(1), 48-64. https://doi.org/10.21061/jte.v20i1.a.4
    Milner-Bolotin, M. (2017). Technology-supported inquiry in STEM teacher education: Collaboration, challenges and possibilities. In I. Levin and D. Tsybulsky (Eds), Digital Tools and Solutions for Inquiry-Based STEM Learning (pp. 252-281). IGI Global.
    Milner-Bolotin, M. (2018). Evidence-based research in STEM teacher education: From theory to practice. Frontiers in Education, 3, 1-9. https://doi.org/10.3389/feduc.2018.00092
    Milner-Bolotin, M., Egersdorfer, D., & Vinayagam, M. (2016). Investigating the effect of question-driven pedagogy on the development of physics teacher candidates’ pedagogical content knowledge. Physical Review Physics Education Research, 12(2), 1-16. https://doi.org/10.1103/PhysRevPhysEducRes.12.020128
    Milner-Bolotin, M., Fisher, H., & MacDonald, A. (2013). Modeling active engagement pedagogy through classroom response systems in a physics teacher education course. LUMAT: International Journal on Math, Science and Technology Education, 1(5), 523-542. https://doi.org/10.31129/lumat.v1i5.1088
    Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054. https://doi.org/10.1111/j.1467-9620.2006.00684.x
    Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: a synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds.), Handbook of research on STEM education, (pp. 3-16). Routledge.
    Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S., & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students' conceptual understanding. Journal of Engineering Education, 102(1), 141-178. https://doi.org/10.1002/jee.20004
    Moore, T. J., Stohlmann, M. S., Wang, H.-H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K–12 STEM education. In, S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in precollege settings: Research into practice (pp. 35–60). West Lafayette, IN: Purdue University Press.
    Mustafa, N., Ismail, Z., Tasir, Z., & Mohamad Said, M. N. H. (2016). A meta‑analysis on effective strategies for integrated STEM education. Advanced Science Letters, 22(12), 4225-4288. https://doi.org/10.1166/asl.2016.8111
    Nadelson, L. S., & Seifert, A. L. (2017). Integrated STEM defined: Contexts, challenges, and the future. The Journal of Educational Research, 110(3), 221-223. https://doi.org/10.1080/00220671.2017.1289775
    Nadelson, L. S., Callahan, J., Pyke, P., Hay, A., Dance, M., & Pfiester, J. (2013). Teacher STEM perception and preparation: Inquiry-based stem professional development for elementary teachers. Journal of Educational Research, 106(2), 157-168. https://doi.org/10.1080/00220671.2012.667014.
    Nadelson, L., Seifert, A., Moll, A., & Coats, B. (2012). i-STEM summer institute: an integrated approach to teacher professional development in STEM. Journal of STEM Education, 13(2), 69-83. https://doi.org/10.4324/9781003197973-9
    National Research Council [NRC]. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. National Academies Press.
    National Research Council [NRC]. (2010). Exploring the intersection of science education and 21st century skills: A workshop summary. National Academies Press.
    National Research Council [NRC]. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. National Academies Press.
    Next Generation Science Standards [NGSS]. (2022). Engineering Design. https://www.nextgenscience.org/topic‑arrangement/msengineering‑design
    Ogot, M., & Kremer, G. (2006, June). Developing a framework for disassemble/assemble/analyze (DAA) activities in engineering education. In 2006 Annual Conference & Exposition (pp. 11-428). Chicago, USA. https://peer.asee.org/1103
    Otto, K. N., & Wood, K. L. (1996). A reverse engineering and redesign methodology for product evolution. In Proceedings of the 1996 ASME Design Theory and Methodology Conference. Irvine, USA. http://dx.doi.org/10.1115/96-DETC/DTM-1523
    Otto, K. N., & Wood, K. L. (1998). Product evolution: a reverse engineering and redesign methodology. Research in Engineering Design, 10(4), 226-243. https://doi.org/10.1007/s001639870003
    Peters-Burton, E. E., & Johnson, T. (2018). Cross-case analysis of engineering education experiences in inclusive STEM-focused high schools in the United States. International Journal of Education in Mathematics, Science and Technology, 6(4), 320-342. https://eric.ed.gov/?id=EJ1193468
    Project Lead the Way (2022). Introduction to Engineering Design | Course Resume. Engineering Curriculum. https://www.pltw.org/curriculum/pltw-engineering
    Purzer, S., & Quintana-Cifuentes, J. P. (2019). Integrating engineering in K-12 science education: Spelling out the pedagogical, epistemological, and methodological arguments. Disciplinary and Interdisciplinary Science Education Research, 1(13), 1-12. https://doi.org/10.1186/s43031-019-0010-0
    Rich, P. J., Jones, B., Belikov, O., Yoshikawa, E., & Perkins, M. (2017). Computing and engineering in elementary school: The effect of year-long training on elementary teacher self-efficacy and beliefs about teaching computing and engineering. International Journal of Computer Science Education in Schools, 1(1), 1-20. https://doi.org/10.21585/ijcses.v1i1.6
    Riskowski, J. L., Todd, C. D., Wee, B., Dark, M. and Harbor, J. (2009). Exploring the effectiveness of an interdisciplinary water resources engineering module in an eighth grade science course. International Journal of Engineering Education, 25(1), 181-195.
    Roehrig, G. H., Dare, E. A., Ring-Whalen, E., & Wieselmann, J. R. (2021). Understanding coherence and integration in integrated STEM curriculum. International Journal of STEM Education, 8(2), 1-21. https://doi.org/10.1186/s40594-020-00259-8.
    Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis. (pp. 231-244). Russell Sage Foundation.
    Ryu, M., Mentzer, N., & Knobloch, N. (2019). Preservice teachers’ experiences of STEM integration: Challenges and implications for integrated STEM teacher preparation. International Journal of Technology and Design Education, 29(3), 493-512. https://doi.org/10.1007/s10798-018-9440-9
    Sanders, M. E. (2009). STEM, STEM Education, STEMmania. The Technology Teacher, 68(4), 20-26. http://hdl.handle.net/10919/51616
    Shafie, H., Majid, F. A., & Ismail, I. S. (2019). Technological pedagogical content knowledge (TPACK) in teaching 21st century skills in the 21st century classroom. Asian Journal of University Education, 15(3), 24-33. https://doi.org/10.24191/ajue.v15i3.7818
    Shahali, E. H. M., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2016). STEM learning through engineering design: Impact on middle secondary students’ interest towards STEM. EURASIA Journal of Mathematics, Science and Technology Education, 13(5), 1189-1211. https://doi.org/10.12973/eurasia.2017.00667a
    Shanta, S., & Wells, J. G. (2022). T/E design based learning: assessing student critical thinking and problem solving abilities. International Journal of Technology and Design Education, 32(1), 267-285. https://doi.org/10.1007/s10798-020-09608-8
    Shavelson, R. J. (1974). Methods for examining representations of a subject-matter structure in a student’s memory. Journal of Research in Science Teaching, 11(3), 231-249.
    Shavelson, R. J., Carey, N. B., & Webb, N. M. (1990). Inicators of Science Achievement: Options fora owefful Policy Instrument. The Phi Delta Kappan, 71(9), 692-697.
    Sheppard, S. D. (1992). Mechanical dissection: An experience in how things work. Proceedings of the Engineering Education: Curriculum Innovation & Integration, 6-10.
    Shernoff, D. J., Sinha, S., Bressler, D. M., & Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(1), 1-16. https://doi.org/10.1186/s40594-017-0068-1
    Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
    Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
    Singer, J. E., Ross, J. M., & Jackson-Lee, Y. (2016). Professional Development for the Integration of Engineering in High School STEM Classrooms. Journal of Pre-College Engineering Education Research (J-PEER), 6(1). https://doi.org/10.7771/2157-9288.1130
    Stehle, S. M., & Peters-Burton, E. E. (2019). Developing student 21 st Century skills in selected exemplary inclusive STEM high schools. International Journal of STEM Education, 6(1), 1-15. https://doi.org/10.1186/s40594-019-0192-1
    Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28-34. https://doi.org/10.5703/1288284314653
    Tan, D. Y., Cheah, C. W., & Lee, C. H. (2021, December). Reverse engineering pedagogy as an educational tool to promote symbiosis between design and physics. In 2021 IEEE International Conference on Engineering, Technology & Education (TALE) (pp. 780-784). IEEE. https://doi.org/10.1109/TALE52509.2021.9678692
    Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., Boeve-de Pauw, J., Dehaene, W., Deprez, J., De Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., Van de Velde, D., Van Petegem, P., & Depaepe, F. (2018). Integrated STEM Education: A Systematic Review of Instructional Practices in Secondary Education. European Journal of STEM Education, 3(1). https://doi.org/10.20897/ejsteme/85525
    Tsai, C. C. (1998a). An analysis of Taiwanese eighth graders' science achievement, scientific epistemological beliefs and cognitive structure outcomes after learning basic atomic theory. International Journal of Science Education, 20 (4), 413-025. https://doi.org/10.1080/0950069980200403
    Tsai, C. C. (1998b). An analysis of scientific epistemological beliefs and learning orientations of Taiwanese eighth graders. Science Education 82(4), 473 - 489. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4%3C473::AID-SCE4%3E3.0.CO;2-8
    Tsai, C. C. (2001). Probing Students’ Cognitive Structures in Science: The Use of a Flow Map Method Coupled with a Meta-Listening Technique. Studies in Educational Evaluation, 27(3), 257-268. https://doi.org/10.1016/S0191-491X(01)00029-3
    Tsai, C. C., & Huang, C. M. (2002). Exploring students’ cognitive structures in learning science: a review of relevant methods. Journal of Biological Education, 36(4), 163-169. https://doi.org/10.1080/00219266.2002.9655827
    Van Haneghan, J. P., Pruet, S. A., Neal-Waltman, R., & Harlan, J. M. (2015). Teacher beliefs about motivating and teaching students to carry out engineering design challenges: some initial data. Journal of Pre-College Engineering Education Research, 5(2), 1-9. https://doi.org/10.7771/2157-9288.1097.
    West, A. B., Sickel, A. J., & Cribbs, J. D. (2015). The science of solubility: Using reverse engineering to brew a perfect cup of coffee. Science Activities, 52(3), 65-73. https://doi.org/10.1080/00368121.2015.1068734
    Wood, K. L., Jensen, D., Bezdek, J., & Otto, K. N. (2001). Reverse engineering and redesign: Courses to incrementally and systematically teach design. Journal of Engineering Education, 90(3), 363-374. https://doi.org/10.1002/j.2168-9830.2001.tb00615.x
    Wu, Y. T. (2013). University students’ knowledge structures and informal reasoning on the use of genetically modified foods: Multidimensional analyses. Research in Science Education, 43, 1873-1890. https://doi.org/10.1007/s11165-012-9343-9
    Wu, Y. T., & Tsai, C. C. (2005). Effects of constructivist-oriented instruction on elementary school students' cognitive structures. Journal of Biological Education, 39(3), 113-119. https://doi.org/10.1080/00219266.2005.9655977
    Wulf, W. A. (2002). The urgency of engineering education reform. Journal of STEM Education: Innovations and Research, 3(3), 3-9. https://www.jstem.org/jstem/index.php/JSTEM/article/view/1250/1103
    Yang, K. L., Wu, H. K., Yeh, Y. F., Lin, K. Y., Wu, J. Y., & Hsu, Y. S. (2021). Implementers, designers, and disseminators of integrated STEM activities: self-efficacy and commitment. Research in Science & Technological Education, 1-19. https://doi.org/10.1080/02635143.2021.2008343
    Yeh, Y. F., Chan, K. K. H., & Hsu, Y. S. (2021). Toward a framework that connects individual TPACK and collective TPACK: A systematic review of TPACK studies investigating teacher collaborative discourse in the learning by design process. Computers & Education, 171. https://doi.org/10.1016/j.compedu.2021.104238
    Yoon, S., Evans, M. G., & Strobel, J. (2014). Validation of the teaching engineering self‐efficacy scale for K‐12 teachers: A structural equation modeling approach. Journal of Engineering Education, 103(3), 463-485. https://doi.org/10.1002/jee.20049
    Yu, K. C., Lin, K. Y., & Fan, S. C. (2013). How high school students apply their knowledge in engineering design projects. International Journal of Engineering Education, 29(6), 1604-1614.
    Yu, K. C., Wu, P. H., Lin, K. Y., Fan, S. C., Tzeng, S. Y., & Ku, C. J. (2021). Behavioral intentions of technology teachers to implement an engineering-focused curriculum. International Journal of STEM Education, 8(1), 1-20. https://doi.org/10.1007/s10956-014-9523-7
    Zhang, Y., Kelley, T. R., & Gu, J. (2022). Chinese technology teacher challenges to infuse engineering design into technology education. International Journal of Technology and Design Education, 1-18. https://doi.org/10.1007/s10798-020-09624-8
    Zhong, B., Kang, S., & Zhan, Z. (2021). Investigating the effect of reverse engineering pedagogy in K‐12 robotics education. Computer Applications in Engineering Education, 29(5), 1097-1111. https://doi.org/10.1002/cae.22363

    下載圖示
    QR CODE