簡易檢索 / 詳目顯示

研究生: 王麒鈞
Chi-Jun Wang
論文名稱: 鈀在鎢(211)表面一維通道上之長程交互作用
Long-range interactions between Pd adatoms on 1D channels of W(211) surface
指導教授: 傅祖怡
Fu, Tsu-Yi
蘇維彬
Su, Wei-Bin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 長程振盪交互作用掃瞄穿隧顯微鏡超高真空系統
英文關鍵詞: long range oscillatory interaction, scanning tunneling microscope, ultra high vacuum system
論文種類: 學術論文
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在先前場離子顯微鏡的研究,發現兩顆鈀原子在鎢(211)表面,在相同通道以及相鄰通道上吸附原子的交互作用具有振盪的形式,即為Friedel Oscillation。FIM受到空間限制,只能看到局部的範圍,因此希望藉由掃瞄穿隧顯微鏡來觀察鈀原子在鎢(211)表面上,受到基底引發的交互作用影響,是否會形成特殊的表面結構。在我們的實驗中,利用離子濺射的方式來清潔樣品表面,接著曝氧氣搭配機械手臂上的加熱板和樣品座中的PBN加熱板加熱退火數次,可得到乾淨的基底表面。利用液態氮使得樣品降至低溫100K之後再蒸鍍鈀原子,觀察鈀吸附原子的分佈;由於在110K單顆的鈀原子會開始擴散,而鈀的雙原子團亦會在250左右發生擴散的行為,因此在我們的實驗中,讓樣品回溫至120K、200K以及RT,再降至低溫100K來觀察鈀吸附原子的分佈,並且統計在相同通道上不同吸附位置出現的次數,然後計算出鈀吸附原子之間的交互作用能。實驗結果發現在低溫或是回溫之後,都可以看到交互作用能有振盪的情況,表示即使回溫至室溫,基底引發的交互作用依舊存在;受到此交互作用的影響,在回溫至120K的實驗中發現鈀吸附原子會形成特殊的拉鍊結構。隨著回溫的溫度提高,也觀察到鈀原子聚集形成島的現象,而且島的數量有增加的趨勢,不過島的大小卻沒有明顯的增減。

    Previous FIM studies showed that the interaction energy between two Pd adatoms on W (211) surface in the same and the nearest channels had oscillation form. It is called Friedel Oscillation. However、FIM was confined by space and it could only see a limited range. Therefore、a special surface structure could be observed by means of STM when Pd adatoms was on W (211) surface. In the present study、ion sputtering was used to clean the sample. The sample was annealed in an oxygen environment several times by two heaters simultaneously in order to obtain clean W (211) surface. After the sample was cooled down to 100K with liquid nitrogen、Pd adatoms was deposited and the distribution was observed. The single Pd atom would start to diffuse at 110K and so did the Pd dimmers at 250K. In the experiment、we raised the temperature of the sample to 120K、200K and RT and then cooled it down to 100K to observe and counted the times of different adsorption cites in the same channels. Next、we evaluated the interaction energies of Pd adatoms. It was found that whether at the low temperature or high temperatures、the interaction energies with the oscillatory behavior in different cases existed. Even if the temperature were raised to RT、the substrate mediated interaction continued to exist. In addition、Pd adatoms formed special zip structure at 120K due to the substrate mediated interaction. Finally、Pd adatoms were assembled to form islands with the rise in temperature. The numbers of islands increased but the size of islands almost remained the same.

    摘要 i Abstract ii 目錄 iii 第一章 緒論 1 第二章 實驗原理 5 2.1 掃瞄穿隧顯微鏡原理 5 2.1.1 穿隧理論 5 2.1.2 局域電子態密度 7 2.2 STM操作模式 8 2.2.1 定電流模式 9 2.2.2 定高度模式 9 2.3 掃瞄穿隧能譜術 10 2.3.1 電流-電壓能譜 10 2.3.2 距離-電壓能譜 10 2.3.3 電流影像穿隧能譜 11 2.4 低能量電子繞射原理 11 第三章 實驗儀器 13 3.1 超高真空系統 13 3.1.1 機械幫浦 14 3.1.2 渦輪分子幫浦 14 3.1.3 撞濺離子幫浦 16 3.1.4 鈦昇華幫浦 17 3.2 真空壓力計 17 3.2.1 派朗尼真空計 18 3.2.2 離子真空計 18 3.3 殘餘氣體分析儀 20 3.4 離子濺射槍 21 3.5 蒸鍍槍 23 3.5.1 K-cell蒸鍍槍 23 3.5.2 電子束蒸鍍槍 23 3.6 低能量電子繞射儀 24 3.6.1 阻滯電場能量分析器 24 3.7 掃瞄穿隧顯微鏡 26 3.7.1 探針 26 3.7.2 掃瞄頭 27 3.7.3 步進器 28 3.7.4 避震裝置 29 3.7.5 電子及控制系統 29 第四章 實驗步驟 31 4.1 前置作業 32 4.1.1 製備探針 32 4.1.2 組裝樣品 33 4.2 建造超高真空環境 34 4.3 清潔樣品 35 4.4 低溫蒸鍍 36 4.5 回溫至不同溫度 37 第五章 資料分析與討論 38 5.1 乾淨的鎢(211)表面 38 5.2 鈀在鎢(211)面上100K的分佈 42 5.3 理論分析與計算方式 44 5.4 在100K相同通道中鈀原子的分佈 49 5.5 回溫至120K相同通道中鈀原子的分佈 52 5.6 回溫至200K相同通道中鈀原子的分佈 57 5.7 回溫至室溫相同通道中鈀原子的分佈 60 5.8 綜合討論 64 第六章 結論 70 參考資料 71

    [1] G. Binnig、H. Rohrer、Ch. Gerber and E. Weibel、Appl. Phys. Lett. 40、178 (1982)
    [2] G. Binnig、H. Rohrer、Ch. Gerber and E. Weibel、Phys. Rev. Lett. 49、57 (1982)
    [3] G. Binnig、H. Rohrer、Ch. Gerber and E. Weibel、Phys. Rev. Lett. 50、120 (1983)
    [4] John G. Simmons、J. Appl. Phys. 34、1793 (1963)
    [5] J. Tersoff and D. R. Hamann、Phys. Rev. Lett. 50、1998 (1983)
    [6] J. Tersoff and D. R. Hamann、Phys. Rev. B 31、805 (1985)
    [7] Erwin W. Müller、J. Appl. Phys. 27、474 (1956)
    [8] Erwin W. Müller、J. Appl. Phys. 28、1 (1956)
    [9] R. S. Becker et al.、Nature 325、419 (1987)
    [10] D. M. Eigler and E. K. Schweizer、Nature 344、524 (1990)
    [11] R. S. Becker et al.、Phys. Rev. Lett. 55、987 (1985)
    [12] R. S. Becker et al.、Phys. Rev. Lett. 55、2032 (1985)
    [13] R. J. Hamers、R. M. Tromp and J. E. Demuth、Phys. Rev. Lett. 56、1972 (1986)
    [14] Joseph A. Stroscio et al.、Phys. Rev. Lett. 57、2579 (1986)
    [15] T. Klitsner、R. S. Becker and J. S. Vickers Phys. Rev. B 41、3837 (1990)
    [16] Markus Ternes et al.、Phys. Rev. Lett. 93、146805 (2004)
    [17] L. Österlund et al.、Phys. Rev. Lett. 83、4812 (1999)
    [18] Takashi Yokoyama et al.、Phys. Rev. Lett. 98、206102 (2007)
    [19] B. Gumhalter and W. Brenig、Surf. Sci. 336、326 (1995)
    [20] Per Hyldgaard and Mats Persson、J. Phys.: Condens. Matter 12、L13 (2000)
    [21] M. M. Kamna、S. J. Stranick and P. S. Weiss、Science 274、118 (1996)
    [22] George M. Whitesides and Bartosz Grzybowski、Science 295、2418 (2002)
    [23] Fabien Silly et al.、Phys. Rev. Lett. 92、016101 (2004)
    [24] N. N. Negulyaev et al.、Surf. Sci. 600、L58 (2006)
    [25] M. F. Crommie、C. P. Lutz and D.M. Eigler、Nature 363、524 (1993)
    [26] Jascha Repp et al.、Phys. Rev. Lett. 85、2981 (2000)
    [27] N. Knorr et al.、Phys. Rev. B 65、115420 (2002)
    [28] V. S. Stepanyuk et al.、Phys. Rev. B 68、205410 (2003)
    [29] Sanjini U. Nanayakkara et al.、Phys. Rev. Lett. 98、206108 (2007)
    [30] Tsu-Yi Fu、Yi-Ju Hwang and Tien T. Tsong、Surf. Sci. 566、462 (2004)
    [31] Tsu-Yi Fu、Te Yi Wu and Tien T. Tsong、Chinese J. Phys. 43、124 (2005)
    [32] Kalman Pelhos et al.、J. Phys. Chem. B 105、3708 (2001)
    [33] Z. Szczudlo et al.、Acta Physica Polonica A 102、781 (2002)
    [34] S. M. Zuber et al.、Ultramicroscopy 95、165 (2003)
    [35] Ya. B. Losovyj et al.、Physica Status Solidi 241、829 (2004)
    [36] N. N. Negulyaev et al.、Phys. Rev. Lett. 101、226601 (2008)
    [37] N. Nilius、T. M. Wallis and W. Ho、Science 297、1853 (2002)
    [38] J. N. Crain et al.、Phys. Rev. Lett. 96、156801 (2006)
    [39] Canhua Liu et al.、Phys. Rev. Lett. 101、146104 (2008)
    [40] Reinhold Egger and Hermann Grabert、Phys. Rev. Lett. 75、3505 (1995)
    [41] Baris Unal et al.、Phys. Rev. B 76、195410 (2007)
    [42] Yong Han et al.、Phys. Rev. Lett. 101、116105 (2008)
    [43] N. Moslemzadeh、S. D. Barrett and J. Ledieu、Surf. Sci. 521、L650 (2002)
    [44] N. Moslemzadeh、S. D. Barrett and J. Ledieu、Surf. Sci. 600、559 (2005)
    [45] J. Bardeen、Phys. Rev. Lett. 6、57 (1961)
    [46] A. Bryant et al.、Appl. Phys. Lett. 48、832 (1986)
    [47] Pavel Sobotík and Ivan Oštádal、Surf. Sci. 602、2835 (2005)
    [48] S. M. Lu et al.、Phys. Rev. B 75、113402 (2007)
    [49] W. B. Su et al.、J. Phys.: Condens. Matter 18、6299 (2006)
    [50] W. B. Su et al.、Phys. Rev. B 74、155330 (2006)
    [51] C. L. Lin et al.、Phys. Rev. Lett. 99、216103 (2007)
    [52] John C. Vickerman、Surface Analysis—The Principal Techniques、Wiley (1997)
    [53] Kurt W. Kolasinski、Surface Science—Foundation of Catalysis and Nanoscience、Wiley (2002)
    [54] Charles Kittel、Introduction to Solid State Physics 8th、Wiley (2005)
    [55] 真空技術與應用,國科會精儀中心 (2001)
    [56] 蘇青森,真空技術精華,五南 (2003)
    [57] User’s manual、High Vacuum Technology、Alcatel (1998)
    [58] ISE5 Sputter Ion Source User’s Guide、Omicron (2000)
    [59] Miniature K-cell Effusion Source Operator’s Handbook、Vacweld (2003)
    [60] Instruction Manual of UHV Evaporator EFM3/4、Omicron (2003)
    [61] SPECTALEED Optics and Electron Gun User’s Guide、Omicron (1999)
    [62] Auger Electron Spectroscopy with Four-Grid SPECTALEED、Omicron (2000)
    [63] Instruments for Surface Science、Omicron (2000)
    [64] 表面分析儀器,國科會精儀中心 (1998)
    [65] Reinhold Egger and Hermann Grabert、Phys. Rev. Lett. 75、3505 (1995)
    [66] Tien T. Tsong、Physica A、357、250 (2005)
    [67] 黃意茹,國立臺灣師範大學碩士論文 (2002)
    [68] 吳德儀,國立臺灣師範大學碩士論文 (2004)

    下載圖示
    QR CODE