簡易檢索 / 詳目顯示

研究生: 陳侃鴻
論文名稱: 氣候變遷對強烈颱風之影響
Impact of climate change on severe tropical cyclones
指導教授: 吳朝榮
Wu, Chau-Ron
學位類別: 碩士
Master
系所名稱: 海洋環境科技研究所
Graduate Institute of Marine Environmental Science and Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 46
中文關鍵詞: 颱風年際變化趨勢變化
論文種類: 學術論文
相關次數: 點閱:258下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風不僅常常帶來嚴重的經濟損失,也危及民眾的生命安全,台灣位於颱風的好發區,颱風相關的研究十分重要,本研究以強烈颱風個數比例與影響颱風強度及個數的因素,在年際與趨勢變化兩方面進行討論。研究結果指出強烈颱風個數比例受到聖嬰的影響,使得颱風的生成位置在聖嬰年相對於正常年偏東,造成颱風在通過本研究區域的滯留時間增加,而850 hPa 風旋度場變化與強烈颱風個數比例有顯著的相關性,影響到颱風的動力,且850 hPa 風旋度場變化也反應出海表面壓力場的變化,進而影響到颱風軌跡,亦會造成颱風的滯留時間增加,使得颱風吸收到更多的颱風潛熱,故在聖嬰年,由於颱風生成位置偏東,且850 hPa 風旋度場變化值較大,故相較正常年與反聖嬰年容易形成強烈颱風。在趨勢方面,強烈颱風個數比例呈現逐年上升的趨勢,而滯留時間以及850hPa風旋度場變化皆逐漸不利於颱風發展,但颱風潛熱逐漸上升,所以在未來海洋可以提供颱風的能量也越多。而颱風個數逐年下降的趨勢,可能是與垂直風切與850 hPa 風旋度場變化有關。綜合來看,在風場的變化逐年不利於颱風發展的情況下,海洋所供給的颱風潛熱對颱風發展越來越重要。

    摘要 I 目錄 II 圖目錄 V 第一章、 緒論 1 1.1 區域介紹 1 1.1.2 颱風 1 1.2 文獻回顧 2 1.3 研究目的 3 第二章、 研究工具及方法 7 2.1 觀測資料介紹 7 2.1.1 AVISO 資料 7 2.1.2 NOAA 海表溫度資料 7 2.1.3 WOA01海水溫度攝氏20度的深度資料 8 2.1.4 U.S.NRL 混合層深度資料 8 2.1.5 NCEP/NCAR 風場資料 8 2.2 研究方法 9 2.2.1 颱風強度與強烈颱風個數比例定義 9 2.2.2 聖嬰年與反聖嬰年之定義 10 2.2.3 垂直風切定義 11 2.2.4 850hPa風旋度場變化定義 11 2.2.5 颱風潛熱 12 第三章、 結果與討論 15 3.1 結果分析 15 3.1.1 颱風強度與強烈颱風個數比例比對 15 3.1.2 強烈颱風個數比例與颱風潛熱相關性 15 3.1.3 強烈颱風個數比例與平均颱風滯留時間的相關性 16 3.1.4 強烈颱風個數比例與垂直風切的相關性 17 3.1.5 強烈颱風個數比例與 850 hPa 風旋度場變化的相關性 17 3.1.6 颱風生成個數與 850 hPa 風旋度場變化的相關性 18 3.2 討論 18 3.2.1 年際部分 19 3.2.2 趨勢部分 21 第四章、 結論 41 未來工作 43 參考文獻 44  

    Camargo, S. J., and Sobel, A. H. (2005). Western North Pacific tropical cyclone intensity and ENSO. Journal of Climate, 18 (15), 2996-3006.
    Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P., and Ghil, M. (2007). Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. Journal of Climate, 20 (14), 3654-3676.
    Chan, J. C., and Liu, K. S. (2004). Global warming and western North Pacific typhoon activity from an observational perspective. Journal of Climate, 17 (23), 4590-4602.
    Chen, S. S., Knaff, J. A., and Marks Jr, F. D. (2006). Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly weather review, 134 (11), 3190-3208.
    Christensen, J. H., Kanikicharla, K. K., Aldrian, E., An, S.-I., Cavalcanti, I. F. A., Castro, M. d., Dong, W., Goswami, P., Hall, A., Kanyanga, J. K., Kitoh, A., Kossin, J., Lau, N.-C., Renwick, J., Stephenson, D. B., Xie, S.-P., and Zhou, T. (2013). Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. M. B. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1217-1308). Cambridge, United Kingdom and New York, NY, USA.
    Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years.Nature, 436 (7051), 686-688.
    Gallina, G. M., and Velden C. S. (2002). Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information, paper presented at 25th Conference on Hurricanes and Tropical Meteorology, Am. Meteorol. Soc., San Diego, Calif.
    Huang, F., and Xu, S. (2010). Super typhoon activity over the western North Pacific and its relationship with ENSO. Journal of Ocean University of China, 9 (2), 123-128.
    Lin, I. I., Pun, I. F., and Wu, C. C. (2009). Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Monthly Weather Review, 137 (11), 37744-3757.
    Moon, I. J., and Kwon, S. J. (2012). Impact of upper-ocean thermal structure on the intensity of Korean peninsular landfall typhoons. Progress in Oceanography, 105, 61-66.
    Palmen, E. (1948). On the formation and structure of tropical hurricanes. Geophysica, 3 (1), 26-38.
    Peduzzi, P., Chatenoux, B., Dao, H., De Bono, A., Herold, C., Kossin, J., Mouton, F., and Nordbeck, O. (2012). Global trends in tropical cyclone risk. Nature Climate Change, 2 (4), 289-294.
    Pun, I. F., Lin, I. I., Wu, C. R., Ko, D. S., and Liu, W. T. (2007). Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. Geoscience and Remote Sensing, IEEE Transactions on, 45 (6), 1616-1630.
    Pun, I. F., Lin, I. I., and Lo, M. H. (2013). Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophysical Research Letters, 40 (17), 4680-4684.
    Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 (5742), 1844-1846.

    QR CODE