簡易檢索 / 詳目顯示

研究生: 沈昀
Shen, Yun
論文名稱: 名詞概念的變動性:中文個別及事件分類詞之事件相關電位研究
Flexibility of Nominal Concepts: An Event-Related Potential Study on Mandarin Individual and Event Classifiers
指導教授: 詹曉蕙
Chan, Shiao-Hui
口試委員: 詹曉蕙
Chan, Shiao-Hui
謝舒凱
Hsieh, Shu-Kai
李佳霖
Lee, Chia-Lin
口試日期: 2024/07/03
學位類別: 碩士
Master
系所名稱: 英語學系
Department of English
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 62
中文關鍵詞: 中文分類詞意面屬性結構詞意誘迫概念的變動性事件相關電位神經語言學
英文關鍵詞: Mandarin classifier, meaning facet, qualia structure, meaning coercion, conceptual flexibility, ERP, neurolinguistics
研究方法: 實驗設計法事件相關電位
DOI URL: http://doi.org/10.6345/NTNU202401123
論文種類: 學術論文
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從:語境為基礎之意面(context-based meaning facet) (Ahrens, Chang, Chen, & Huang, 1998)、屬性結構(qualia structure)及詞意誘迫(meaning coercion) (Huang & Ahrens, 2003; Pustejovsky, 1998)、及概念的變動性(conceptual flexibility) (Yee & Thompson-Schill, 2016)之觀點,以事件相關電位方法(event-related potential, ERP)探討中文個別(如:支、顆)及事件(如:場、班)分類詞片語之語意分別。從意面的角度解釋,個別及事件分類詞為名詞概念提供了不同的語境訊息,用以強調名詞概念中某一特定意面;而從屬性結構及詞意誘迫的角度來說,個別及事件分類詞所分別強調之屬性角色(qualia role):語意類別角色(FORMAL role)及功能角色(TELIC role),會誘迫(coerce)後方的名詞意義,並同時激發與其意義相對應的語意特徵:感官特徵(perceptual feature)及功能特徵(functional feature)。若從神經認知歷程的角度理解,概念的形成及處理具變動性,而此變動性有賴於概念在何種語境中呈現。不同名詞類別、語意特徵、及語意關聯性之操弄會誘發不同之事件相關電位成分(ERP components),代表其背後不同的認知處理機制。根據以上理解,本研究探討個別及事件分類詞是否會誘迫/促發後方的名詞概念表現出相應的個別及功能意義解讀。實驗材料由觸發及目標(prime-target)詞彙組成。觸發詞彙為數字-分類詞及名詞(以兩個連續畫面呈現),而目標詞彙為與觸發詞彙相關或不相關之語意特徵。受試者需判斷目標詞彙是否合適於描述前面的觸發詞彙。目標詞彙之ERP結果呈現過去文獻中時常出現之N400語意關聯性效應 (relatedness effect);而後,在前腦區出現一致性效應(congruity effect,指分類詞及語意特徵的屬性角色一致性)所誘發之晚期正向波 (frontal post-N400 positivity, f-PNP)。此電生理證據說明分類詞確實會誘迫後方的名詞意義,亦支持了以語境為基礎之意面,以及屬性結構及詞意誘迫的理論。更具體來說,當一個與分類詞屬性角色一致之語意特徵接連在名詞後出現時,受試者會對此進行更深層之後續分析。此結果同時也支持了神經認知領域中,對於概念之變動性的推論。名詞概念之處理可以分階段進行:在350-500毫秒時,名詞概念及語意特徵之間的關聯性會先被處理,而在500毫秒後,分類詞及語意特徵之間的屬性角色一致性才會被進一步分析。

    The current study explored the semantic distinction between Mandarin individual (e.g., 支zhi, 顆ke ) and event (e.g., 場chang, 班ban) classifier phrases from the perspectives of context-based meaning facets (Ahrens, Chang, Chen, & Huang, 1998), qualia structure and coercion (Huang & Ahrens, 2003; Pustejovsky, 1998), and conceptual flexibility (Yee & Thompson-Schill, 2016) with the event-related potential (ERP) technique. From the semantic point of view, individual vs. event classifiers provide distinctive contextual information for choosing a particular meaning facet of the nominal concept, or alternatively, the different qualia roles (FORMAL vs. TELIC) expressed by two types of classifiers coerce the meaning of the noun and also highlight the corresponding features (perceptual vs. functional) of the nominal concepts. From the perspective of neurocognition, concepts are processed flexibly in terms of the context they are presented in, and the manipulations of nominal categories, semantic features, and semantic relatedness would induce different ERP components, suggesting the processing differences behind them. Based on the previous understandings, this study aimed to explore the differences between individual vs. event classifiers by investigating whether these two types of classifiers would coerce/activate the corresponding individual vs. event reading of the following nominal concept. The experimental materials consisted of prime-target pairs, with the prime being the numeral-classifier and the noun (appearing in two consecutive frames) and the target being a semantic feature related or unrelated to the prime. Participants had to judge whether the target appropriately described the prime. The ERP response to the target showed the commonly reported N400 relatedness effect followed by a frontal post-N400 positivity (f-PNP) congruity effect (i.e., the congruity of the qualia roles between classifiers and features). The electrophysiological evidence demonstrated that classifiers did coerce the following nouns, strengthening the theories of context-based meaning facets and Mandarin classifier coercion. Furthermore, when the upcoming feature matched the highlighted meaning facet/qualia role, participants would perform a deeper, post-lexical analysis. The findings also supported that nominal concepts were processed flexibly in different stages: the semantic relatedness between classifier phrases and features during 350-500ms and the congruity of qualia roles between classifiers and features after 500ms.

    Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Mandarin classifier types and their conceptual representations 3 2.2 A linguistic perspective of meaning in classifier-noun phrases 5 2.2.1 Context-based meaning facets 5 2.2.2 Qualia structure and coercion 6 2.3 A neurocognitive perspective of meaning: conceptual representations 9 2.3.1 Amodal vs. modality-specific conceptual representations 9 2.3.2 Stable vs. flexible conceptual representations 10 2.4 The present study 14 Chapter 3 Methodology 16 3.1 Participants 16 3.2 Materials 16 3.3 Procedure 21 3.4 Data acquisition and analysis 22 3.4.1 Data acquisition 22 3.4.2 Data analysis 23 3.5 Expected findings 26 Chapter 4 Results 27 4.1 Behavioral data 27 4.1.1 Accuracy 27 4.1.2 Reaction times 28 4.2 ERP data 29 4.2.1 N1(110ms-160ms) & P2 (150-250ms) 34 4.2.3 N400 (350-500ms) 35 4.2.3 Post-N400 positivity (PNP) (500-800ms) 36 4.2.4 N1, P2, N400 and PNP of the noun (the 2nd epoch of the prime) 39 Chapter 5 Discussion 42 5.1 The classifier type effect: the N00 and p-PNP 43 5.2. The relatedness effect: the N400 and p-PNP 44 5.3 The congruity effect: the f-PNP 45 5.4 Null effects in N1 & P2 48 5.5 Back-priming effect and ISI design 49 Chapter 6 Conclusion 52 References 52 Appendixes 59 Appendix A: Familiarity rating questionnaire 59 Appendix B: Semantic feature collection questionnaire 60 Appendix C: Relatedness rating questionnaire 62

    Ahrens, K., Chang, L.-l., Chen, K.-j., & Huang, C.-R. (1998). Meaning representation and meaning instantiation for Chinese nominals. Paper presented at the International Journal of Computational Linguistics & Chinese Language Processing, Volume 3, Number 1, February 1998: Special Issue on the 10th Research on Computational Linguistics International Conference.
    Ahrens, K., & Huang, C.-R. (1996). Classifiers and semantic type coercion: Motivating a new classification of classifiers. Paper presented at the Proceedings of the 11th Pacific Asia conference on language, information and computation.Barsalou, L. W. (2016). On staying grounded and avoiding quixotic dead ends. Psychonomic bulletin & review, 23, 1122-1142.
    Bermeitinger, C., Wentura, D., & Frings, C. (2011). How to switch on and switch off semantic priming effects for natural and artifactual categories: Activation processes in category memory depend on focusing specific feature dimensions. Psychonomic bulletin & review, 18, 579-585.
    Chan, S.-h. (2019). An elephant needs a head but a horse does not: An ERP study of classifier-noun agreement in Mandarin. Journal of Neurolinguistics, 52, 100852.
    Chan, S.-h. (2022). Dynamics of nominal classification systems in language processing. Language, Cognition and Neuroscience, 37(6), 671-685.
    Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478-484.
    Chao, Y.-R. (1968). A grammar of spoken Chinese: Univ of California Press.
    Chierchia, G., Partee, B. B., & Turner, R. (2012). Properties, Types and Meaning: Volume II: Semantic Issues (Vol. 39): Springer Science & Business Media.
    Chwilla, D. J., Hagoort, P., & Brown, C. M. (1998). The mechanism underlying backward priming in a lexical decision task: Spreading activation versus semantic matching. The Quarterly Journal of Experimental Psychology: Section A, 51(3), 531-560.
    Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407.
    Connell, L., Lynott, D., & Banks, B. (2018). Interoception: the forgotten modality in perceptual grounding of abstract and concrete concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170143.
    Craig, A. D. (2003). Interoception: the sense of the physiological condition of the body. Current opinion in neurobiology, 13(4), 500-505.
    Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1-2), 25-62.
    Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.
    Di Sciullo, A. M. (2003). Asymmetry in grammar. Asymmetry in Grammar, 1-412.
    Federmeier, K. D., Kutas, M., & Schul, R. (2010). Age-related and individual differences in the use of prediction during language comprehension. Brain and language, 115(3), 149-161.
    Friederici, A. D., Hahne, A., & Mecklinger, A. (1996). Temporal structure of syntactic parsing: early and late event-related brain potential effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(5), 1219.
    Gao, M. Y., & Malt, B. C. (2009). Mental representation and cognitive consequences of Chinese individual classifiers. Language and Cognitive Processes, 24(7-8), 1124-1179.
    Hahne, A., & Friederici, A. D. (1999). Electrophysiological evidence for two steps in syntactic analysis: Early automatic and late controlled processes. Journal of cognitive neuroscience, 11(2), 194-205.
    Hauk, O. (2016). Only time will tell–why temporal information is essential for our neuroscientific understanding of semantics. Psychonomic Bulletin & Review, 23, 1072-1079.
    Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41(2), 301-307.
    Helbig, H. B., Graf, M., & Kiefer, M. (2006). The role of action representations in visual object recognition. Experimental Brain Research, 174, 221-228.
    Her, O.-S. (2012). Structure of classifiers and measure words: A lexical functional account. Language and linguistics, 13(6), 1211.
    Her, O.-S., & Hsieh, C.-T. (2010). On the semantic distinction between classifiers and measure words in Chinese. Language and linguistics, 11(3), 527-551.
    Hoenig, K., Sim, E.-J., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: dynamic recruitment of semantic maps from visual, motor, and motion-related areas. Journal of cognitive neuroscience, 20(10), 1799-1814.
    Huang, C.-R., & Ahrens, K. (2003). Individuals, kinds and events: classifier coercion of nouns. Language Sciences, 25(4), 353-373.
    Huang, C.-R., Chen, K.-J., & Lai, Q. (1997). Mandarin Daily Dictionary of Chinese Classifiers. In: Mandarin Daily Press, Taipei, Taiwan.
    Imai, M., Saalbach, H., & Stern, E. (2010). Are Chinese and German children taxonomic, thematic, or shape biased? Influence of classifiers and cultural contexts. Frontiers in Psychology, 1, 194.
    Kalénine, S., Shapiro, A. D., Flumini, A., Borghi, A. M., & Buxbaum, L. J. (2014). Visual context modulates potentiation of grasp types during semantic object categorization. Psychonomic bulletin & review, 21, 645-651.
    Kan, I. P., Kable, J. W., Van Scoyoc, A., Chatterjee, A., & Thompson-Schill, S. L. (2006). Fractionating the left frontal response to tools: Dissociable effects of motor experience and lexical competition. Journal of cognitive neuroscience, 18(2), 267-277.
    Kiefer, M. (2001). Perceptual and semantic sources of category-specific effects: Event-related potentials during picture and word categorization. Memory & Cognition, 29, 100-116.
    Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: theoretical developments, current evidence and future directions. Cortex, 48(7), 805-825.
    Kiefer, M., Sim, E.-J., Helbig, H., & Graf, M. (2011). Tracking the time course of action priming on object recognition: evidence for fast and slow influences of action on perception. Journal of cognitive neuroscience, 23(8), 1864-1874.
    Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing: Evidence from event-related potentials. Journal of memory and language, 52(2), 205-225.
    Kuperberg, G. R., Sitnikova, T., Caplan, D., & Holcomb, P. J. (2003). Electrophysiological distinctions in processing conceptual relationships within simple sentences. Cognitive Brain Research, 17(1), 117-129.
    Li, F., Hong, X., & Wang, Y. (2021). The N400 and Post-N400 positivity effect in Mandarin classifier-noun congruence: An ERP study. Journal of Neurolinguistics, 57, 100958.
    Lin, K.-y., & Chan, S.-h. (2019). When senses meet functions: an amodal stage in conceptual processing. Journal of Cognitive Psychology, 31(1), 64-75.
    Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in human neuroscience, 8, 213.
    Luck, S. J. (2022). Applied event-related potential data analysis. LibreTexts.[Google Scholar].
    Mahon, B. Z. (2015). What is embodied about cognition? Language, Cognition and Neuroscience, 30(4), 420-429.
    Mahon, B. Z., & Hickok, G. (2016). Arguments about the nature of concepts: Symbols, embodiment, and beyond. Psychonomic bulletin & review, 23, 941-958.
    O'Rourke, P. L., & Van Petten, C. (2011). Morphological agreement at a distance: Dissociation between early and late components of the event-related brain potential. Brain research, 1392, 62-79.
    Oliver, R. T., Geiger, E. J., Lewandowski, B. C., & Thompson-Schill, S. L. (2009). Remembrance of things touched: How sensorimotor experience affects the neural instantiation of object form. Neuropsychologia, 47(1), 239-247.
    Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature reviews neuroscience, 8(12), 976-987.
    Pobric, G., Jefferies, E., & Ralph, M. A. L. (2010). Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 48(5), 1336-1342.
    Pustejovsky, J. (1998). The generative lexicon: MIT press.
    Pustejovsky, J. (2011). Coercion in a general theory of argument selection.
    Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42-55.
    Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychological review, 111(1), 205.
    Saalbach, H., & Imai, M. (2007). Scope of linguistic influence: Does a classifier system alter object concepts? Journal of Experimental Psychology: General, 136(3), 485.
    Sanford, A. J., Leuthold, H., Bohan, J., & Sanford, A. J. (2011). Anomalies at the borderline of awareness: An ERP study. Journal of cognitive neuroscience, 23(3), 514-523.
    Simmons, W. K., Martin, A., & Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15(10), 1602-1608.
    Simmons, W. K., Rapuano, K. M., Kallman, S. J., Ingeholm, J. E., Miller, B., Gotts, S. J., . . . Martin, A. (2013). Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nature neuroscience, 16(11), 1551-1552.
    Swaab, T., Brown, C., & Hagoort, P. (2003). Understanding words in sentence contexts: The time course of ambiguity resolution. Brain and language, 86(2), 326-343.
    Tai, J. H. (1994). Chinese classifier systems and human categorization. In honor of William S.-Y. Wang: Interdisciplinary studies on language and language change, 479-494.
    Thornhill, D. E., & Van Petten, C. (2012). Lexical versus conceptual anticipation during sentence processing: Frontal positivity and N400 ERP components. International journal of psychophysiology, 83(3), 382-392.
    Truman, A., & Kutas, M. (2024). Flexible Conceptual Representations. Cognitive Science, 48(6), e13475.
    Van Herten, M., Kolk, H. H., & Chwilla, D. J. (2005). An ERP study of P600 effects elicited by semantic anomalies. Cognitive Brain Research, 22(2), 241-255.
    Van Petten, C., & Kutas, M. (1987). Ambiguous words in context: An event-related potential analysis of the time course of meaning activation. Journal of Memory and language, 26(2), 188-208.
    Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and ERP components. International journal of psychophysiology, 83(2), 176-190.
    Vermeulen, N., Corneille, O., & Niedenthal, P. M. (2008). Sensory load incurs conceptual processing costs. Cognition, 109(2), 287-294.
    Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied language understanding. Frontiers in Psychology, 2, 116.
    Xu, X., & Li, J. (2020). Concreteness/abstractness ratings for two-character Chinese words in MELD-SCH. PloS one, 15(6), e0232133.
    Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic bulletin & review, 23, 1015-1027.
    Zhang, N. N. (2011). Numeral classifier structures. Book manuscript, National Chung Cheng Univesity.
    Zhang, S., & Schmitt, B. (1998). Language-dependent classification: The mental representation of classifiers in cognition, memory, and ad evaluations. Journal of Experimental Psychology: Applied, 4(4), 375.
    Zhang, Y., Zhang, J., & Min, B. (2012). Neural dynamics of animacy processing in language comprehension: ERP evidence from the interpretation of classifier–noun combinations. Brain and language, 120(3), 321-331.
    Zhong, Y., Huang, C.-R., & Ahrens, K. (2021). Embodied grounding of concreteness/abstractness: A sensory-perceptual account of concrete and abstract concepts in Mandarin Chinese. Paper presented at the Workshop on Chinese Lexical Semantics.
    Zwaan, R. A. (2016). Situation models, mental simulations, and abstract concepts in discourse comprehension. Psychonomic bulletin & review, 23, 1028-1034.
    Zwaan, R. A., Stanfield, R. A., & Yaxley, R. H. (2002). Language comprehenders mentally represent the shapes of objects. Psychological science, 13(2), 168-171.

    下載圖示
    QR CODE