簡易檢索 / 詳目顯示

研究生: 徐羽薇
Yu-Wei Hsu
論文名稱: 利用iTRAQ化學標定方法分析急性與慢性C型肝炎病毒 感染之差異蛋白質體研究
Differential Proteomic Analysis of Acute and Chronic Hepatitis C Virus Infections Using iTRAQ-based Technology
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 110
中文關鍵詞: 肝癌C型肝炎病毒HuH7.5-SEAP同重元素相對與絕對定量親水性作用層析等電聚焦液相層析串聯式質譜儀
英文關鍵詞: hepatocellular carcinoma (HCC), hepatitis C virus (HCV), HuH7.5-SEAP, iTRAQ, HILIC, isoelectric focusing, LC-MS/MS
論文種類: 學術論文
相關次數: 點閱:204下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝癌是全球最普遍且致命的癌症之一,而慢性C型肝炎病毒的患者有20~30%會演變為肝硬化甚至是肝癌,由於C型肝炎病毒基因本身變異性大,以致於抗病毒藥物與疫苗的發展都成為醫療界的一大挑戰。本篇研究將藉由HuH7.5-SEAP細胞株模擬C型肝炎病毒顆粒感染細胞,再採用同重元素相對和絕對定量(iTRAQ)的化學標定方法搭配質譜技術,分析在急性與慢性感染情況下其蛋白質相對含量變化。iTRAQ標定的胜肽樣品會以等電聚焦分級分離儀(sIEF)或親水性作用層析法(HILIC)進行分餾,之後進行奈米級液相層析串聯式質譜分析。研究中總共鑑定到2,615個蛋白質,其中1,816個蛋白質具定量結果,並且發現利用二維的液相層析技術來分離胜肽樣品,顯示兩種分離策略能提供良好的互補性與正交性。在急性和慢性感染情況下分別挑選出78和140個具有顯著差異的蛋白質,並以GeneGo生物資訊軟體分析,結果顯示許多蛋白質與細胞骨架重組及細胞吸附等兩種生物作用途徑有相關。目前挑選與胰島素阻抗、囊泡運輸、細胞骨架重組及脂蛋白分泌途徑等相關的蛋白質以西方墨點法(Western blot)進行驗證,期望能發現新穎的蛋白質,並以此作為治療C型肝炎病毒的藥物標記分子。

    Hepatocellular carcinoma (HCC) is one of the most prevalent and mortal cancer in the world, and 20% to 30% of patients with chronically hepatitis C virus lead to liver cirrhosis and liver cancer. Due to genetic variability of hepatitis C virus, the development of antiviral drugs and vaccines becomes a real challenge. In this study, naïve Huh7.5-SEAP cells were established and infected by hepatitis C virus, then isobaric tags for relative and absolute quantitation (iTRAQ) was applied to investigate protein profiles in both acute and chronic infections. The iTRAQ labeled peptides were fractionated by solution isoelectric focusing (sIEF) or hydrophilic interaction liquid chromatography (HILIC), followed by reversed phase nano-LC tandem mass spectrometry analysis. A total of 2615 proteins were identified, and 1816 of them were also quantified. Two-dimensional liquid chromatography technique that employed on iTRAQ labeled peptides provided results with excellent complementarity and orthogonality. Moreover, 78 and 140 differentially expressed proteins were selected in acute and chronic infection cases for GeneGo analysis. As a result, these proteins were found to be associated with cytoskeleton remodeling and cell adhesion. Besides, proteins correlated with insulin resistance, vesicular traffic, actin remodeling and secretory pathway, will be further validated by Western blot, and could serve as novel diagnostic biomarkers for hepatitis C virus infection.

    謝誌.................................................... I 目錄.................................................... II 圖目錄................................................... V 表目錄..................................................VII 英文縮寫檢索表 ......................................... VIII Abstract................................................ X 中文摘要................................................. XI 壹 序論 ................................................. 1 第一節、肝癌 .............................................. 1 第二節、肝癌分類 ........................................... 1 一、B 型肝炎病毒(hepatitis B virus) ........................ 2 二、C 型肝炎病毒(hepatitis C virus) ........................ 3 三、肝纖維化(liver fibrosis) ............................... 3 四、肝硬化(cirrhosis) ..................................... 4 第三節、肝癌診斷的方法 ....................................... 4 第四節、一般常見肝癌治療方法................................... 5 第五節、液相層析分離技術...................................... 6 第六節、質譜儀技術........................................... 9 第七節、差異蛋白質體學(differential proteomics) ............. 12 一、二維凝膠電泳(two-dimensional gel electrophoresis, 2-DE) .13 二、代謝物標定(metabolic labeling) (in vivo)............... 14 三、化學和酵素標定(chemical and enzymatic labeling) (in vitro) ..15 第八節、西方墨點法(Western blot) ........................... 18 第九節、研究動機............................................ 19 貳 實驗材料與方法.......................................... 20 第一節、樣品製備............................................ 20 第二節、藥品............................................... 21 第三節、試劑............................................... 21 第四節、儀器設備 ........................................... 21 第五節、蛋白質濃度測定(Bradford protein assay)............... 22 第六節、蛋白質水解(in-solution digestion)和標定 iTRAQ® 試劑 .. 23 第七節、第一維分餾策略 ...................................... 24 一、親水性作用層析法(hydrophilic interaction liquid chromatography, HILIC) .................................. 24 二、等電聚焦分級分離儀(solution isoelectric focusing, sIEF). 25 第八節、自製碳 18 離心管柱(C18 spin column)去鹽 ............. 27 第九節、奈米級液相層析電噴灑游離串聯式質譜(nanoLC ESI tandem mass spectrometry) ........................................... 28 一、高效能液相層析(High-performance liquid chromatography, HPLC).................................................... 30 二、超高效能液相層析(ultra-performance liquid chromatography, UPLC).................................................... 30 三、質譜儀參數設定.......................................... 31 第十節、資料分析(data analysis)............................. 33 参 實驗結果與討論.......................................... 35 第一節 蛋白質樣品濃度測定................................... 35 第二節 利用不同分餾方法分離 iTRAQ 標記胜肽樣品 ................ 35 一、分餾方法............................................... 36 二、分餾策略之正交性(orthogonality)......................... 37 三、分餾策略之互補性(complementarity)....................... 38 第三節、蛋白質身份鑑定....................................... 39 第四節、蛋白質定量.......................................... 40 第五節、蛋白質相關生物作用途徑................................ 41 肆 結果與未來展望......................................... 44 圖....................................................... 46 表....................................................... 79 參考文獻................................................. 103

    (1) Perz, J. F.; Armstrong, G. L.; Farrington, L. A.; Hutin, Y. J.; Bell, B. P.: The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. Journal of hepatology 2006, 45, 529-38.
    (2) El-Serag, H. B.: Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 142, 1264-1273 e1.
    (3) Jemal, A.; Siegel, R.; Xu, J.; Ward, E.: Cancer statistics, 2010. CA: a cancer journal for clinicians 2010, 60, 277-300.
    (4) Kao, J. H.; Chen, D. S.: Changing disease burden of hepatocellular carcinoma in the Far East and Southeast Asia. Liver international : official journal of the International Association for the Study of the Liver 2005, 25, 696-703.
    (5) Farazi, P. A.; DePinho, R. A.: Hepatocellular carcinoma pathogenesis: from genes to environment. Nature Reviews Cancer 2006, 6, 674-687.
    (6) Combes, B.; Shorey, J.; Barrera, A.; Stastny, P.; Eigenbrodt, E. H.; Hull, A. R.; Carter, N. W.: Glomerulonephritis with deposition of Australia antigen-antibody complexes in glomerular basement membrane. Lancet 1971, 2, 234-7.
    (7) Ezzikouri, S.; Ozawa, M.; Kohara, M.; Elmdaghri, N.; Benjelloun, S.; Tsukiyama-Kohara, K.: Recent insights into hepatitis B virus-host interactions. Journal of medical virology 2014.
    (8) Freitas, S. Z.; Soares, C. C.; Tanaka, T. S.; Lindenberg, A. S.; Teles, S. A.; Torres, M. S.; Mello, F. C.; Mendes-Correa, M. C.; Savassi-Ribas, F.; Motta-Castro, A. R.: Prevalence, risk factors and genotypes of hepatitis B infection among HIV-infected patients in the State of Mato Grosso do Sul, Central Brazil. The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases 2014.
    (9) Sung, J. L.: Prevention of hepatitis B and C virus infection for prevention of cirrhosis and hepatocellular carcinoma. Journal of gastroenterology and hepatology 1997, 12, S370-6.
    (10) Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M.: Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 1989, 244, 359-62.
    (11) Georg, G. I.; Wang, S.: Hepatitis C virus (HCV) therapies special thematic issue: call for papers. Journal of medicinal chemistry 2013, 56, 387.
    (12) Brechot, C.: Hepatitis C virus: molecular biology and genetic variability. Digestive diseases and sciences 1996, 41, 6S-21S.
    (13) Simmonds, P.: Genetic diversity and evolution of hepatitis C virus--15 years on. The Journal of general virology 2004, 85, 3173-88.
    (14) Zein, N. N.: Clinical Significance of Hepatitis C Virus Genotypes. Clinical Microbiology Reviews 2000, 13, 223-235.
    (15) Bataller, R.; Brenner, D. A.: Liver fibrosis. The Journal of clinical investigation 2005, 115, 209-18.
    (16) Amarapurkar, D. N.; Hashimoto, E.; Lesmana, L. A.; Sollano, J. D.; Chen, P. J.; Goh, K. L.; Asia-Pacific Working Party on, N.: How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? Journal of gastroenterology and hepatology 2007, 22, 788-93.
    (17) Badvie, S.: Hepatocellular carcinoma. Postgraduate medical journal 2000, 76, 4-11.
    (18) Bruix, J.; Sherman, M.; Llovet, J. M.; Beaugrand, M.; Lencioni, R.; Burroughs, A. K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodes, J.; HCC, E. P. o. E. o.: Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. Journal of hepatology 2001, 35, 421-30.
    (19) Ueno, S.; Tanabe, G.; Sako, K.; Hiwaki, T.; Hokotate, H.; Fukukura, Y.; Baba, Y.; Imamura, Y.; Aikou, T.: Discrimination value of the new western prognostic system (CLIP score) for hepatocellular carcinoma in 662 Japanese patients. Cancer of the Liver Italian Program. Hepatology 2001, 34, 529-34.
    (20) Llovet, J. M.; Fuster, J.; Bruix, J.; Barcelona-Clinic Liver Cancer, G.: The Barcelona approach: diagnosis, staging, and treatment of hepatocellular carcinoma. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society 2004, 10, S115-20.
    (21) Ratnam, D.; Dev, A.; Nguyen, T.; Sundararajan, V.; Harley, H.; Cheng, W.; Lee, A.; Rusli, F.; Chen, R.; Bell, S.; Pianko, S.; Sievert, W.: Efficacy and tolerability of pegylated interferon-alpha-2a in chronic hepatitis B: a multicenter clinical experience. Journal of gastroenterology and hepatology 2012, 27, 1447-53.
    (22) Zhu, Y.; Chen, S.: Antiviral treatment of hepatitis C virus infection and factors affecting efficacy. World journal of gastroenterology : WJG 2013, 19, 8963-73.
    (23) Toniutto, P.; Fabris, C.; Bitetto, D.; Fornasiere, E.; Rapetti, R.; Pirisi, M.: Valopicitabine dihydrochloride:a specific polymerase inhibitor of hepatitis C virus. Current opinion in investigational drugs 2007, 8, 150-8.
    (24) Motoyama, A.; Yates, J. R., 3rd: Multidimensional LC separations in shotgun proteomics. Analytical chemistry 2008, 80, 7187-93.
    (25) Yates, J. R.; Ruse, C. I.; Nakorchevsky, A.: Proteomics by Mass Spectrometry: Approaches, Advances, and Applications. Annual Review of Biomedical Engineering 2009, 11, 49-79.
    (26) Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.: Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. Journal of separation science 2005, 28, 1694-1703.
    (27) Gilar, M.; Olivova, P.; Daly, A. E.; Gebler, J. C.: Orthogonality of separation in two-dimensional liquid chromatography. Analytical chemistry 2005, 77, 6426-34.
    (28) AJ., A.: Hydrophilic-interaction chromatography for the
    separation of peptides, nucleic acids and other polar
    compounds. Journal of chromatography. A 1990, 177-96.
    (29) Buszewski, B.; Noga, S.: Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and bioanalytical chemistry 2011, 402, 231-247.
    (30) Di Palma, S.; Hennrich, M. L.; Heck, A. J.; Mohammed, S.: Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. Journal of proteomics 2012, 75, 3791-813.
    (31) Boersema, P. J.; Mohammed, S.; Heck, A. J.: Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and bioanalytical chemistry 2008, 391, 151-9.
    (32) Jandera, P.: Stationary phases for hydrophilic interaction chromatography, their characterization and implementation into multidimensional chromatography concepts. Journal of separation science 2008, 31, 1421-37.
    (33) Horth, P.; Miller, C. A.; Preckel, T.; Wenz, C.: Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. Molecular & cellular proteomics : MCP 2006, 5, 1968-74.
    (34) Cargile, B. J.; Sevinsky, J. R.; Essader, A. S.; Stephenson, J. L., Jr.; Bundy, J. L.: Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics. Journal of biomolecular techniques : JBT 2005, 16, 181-9.
    (35) Heller, M.; Michel, P. E.; Morier, P.; Crettaz, D.; Wenz, C.; Tissot, J. D.; Reymond, F.; Rossier, J. S.: Two-stage Off-Gel isoelectric focusing: protein followed by peptide fractionation and application to proteome analysis of human plasma. Electrophoresis 2005, 26, 1174-88.
    (36) Vesterberg, O.; Svensson, H.: Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta chemica Scandinavica 1966, 20, 820-34.
    (37) Agilent 3100 OFFGEL Fractionator.
    (38) Nier, A. O.: Electron impact mass spectrometry. Rev. Sci. Unstrum. 1947, 18, 415.
    (39) Munsun, M. S. B. F., F. H.: Chemical ionization mass spectrometry J. Am. Chem. Soc. 1960, 88, 2621.
    (40) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M.: Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.
    (41) Karas, M.; Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical chemistry 1988, 60, 2299-301.
    (42) Tanaka, K. e. a.: Rapid Commun. Mass Spectrom. 1988, 2, 151.
    (43) Aleksandrov, M. L. G., L. N.; Shkurov, V. A.; Pavlenko, V.A.; Krasnov, N. V.; Nikolaev, V. I. : Mechanism of ion formation during the electrohydrodynamic sputtering of a liquid into a vacuum J. Anal. Chem. USSR 1984, 39, 1268.
    (44) Yi, E. C.; Lee, H.; Aebersold, R.; Goodlett, D. R.: A microcapillary trap cartridge-microcapillary high-performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid communications in mass spectrometry : RCM 2003, 17, 2093-8.
    (45) Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R.: A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry 2003, 75, 4646-58.
    (46) Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P.: Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Journal of proteome research 2003, 2, 43-50.
    (47) Mitchell Wells, J.; McLuckey, S. A.: Collision‐Induced Dissociation (CID) of Peptides and Proteins. In Methods in enzymology; Burlingame, A. L., Ed.; Academic Press, 2005; Vol. Volume 402; pp 148-185.
    (48) Yates, J. R., 3rd; Eng, J. K.; McCormack, A. L.; Schieltz, D.: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical chemistry 1995, 67, 1426-36.
    (49) Mortz, E.; O'Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M.: Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, 8264-7.
    (50) Pappin, D. J.; Hojrup, P.; Bleasby, A. J.: Rapid identification of proteins by peptide-mass fingerprinting. Current biology : CB 1993, 3, 327-32.
    (51) O'Farrell, P. H.: High resolution two-dimensional electrophoresis of proteins. The Journal of biological chemistry 1975, 250, 4007-21.
    (52) Gorg, A.; Weiss, W.; Dunn, M. J.: Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4, 3665-85.
    (53) Gygi, S. P.; Corthals, G. L.; Zhang, Y.; Rochon, Y.; Aebersold, R.: Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 9390-5.
    (54) Merril, C. R.; Switzer, R. C.; Van Keuren, M. L.: Trace polypeptides in cellular extracts and human body fluids detected by two-dimensional electrophoresis and a highly sensitive silver stain. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 4335-9.
    (55) Unlu, M.; Morgan, M. E.; Minden, J. S.: Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 1997, 18, 2071-7.
    (56) Tannu, N. S. H., S. E.: Two-dimensional fluorescence difference gel electrophoresis for comparative proteimics profiling. Nature protocols 2006, 1, 1732-1742.
    (57) Tonge, R.; Shaw, J.; Middleton, B.; Rowlinson, R.; Rayner, S.; Young, J.; Pognan, F.; Hawkins, E.; Currie, I.; Davison, M.: Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 2001, 1, 277-396.
    (58) Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M.: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 2002, 1, 376-86.
    (59) Yao, X. A., C.; Fenselau, C.: Dissection of Proteolytic 18O Labeling: Endoprotease-Catalyzed 16O- to-18O Exchange of Truncated Peptide Substrates. Journal of proteome research 2003, 2, 147-52.
    (60) Yao, X.; Freas, A.; Ramirez, J.; Demirev, P. A.; Fenselau, C.: Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Analytical chemistry 2001, 73, 2836-42.
    (61) Hsu, J. L. H., S.Y.; Chow, N. H.; Chen, S. H.: Stable-Isotope Dimethyl Labeling for Quantitative Proteomics. Analytical chemistry 2003, 75, 6843-52.
    (62) Boersema, P. J.; Raijmakers, R.; Lemeer, S.; Mohammed, S.; Heck, A. J.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols 2009, 4, 484-94.
    (63) Gygi, S. P.; Rist, B.; Gerber, S. A.; Turecek, F.; Gelb, M. H.; Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature biotechnology 1999, 17, 994-9.
    (64) Ong, S. E. B., B.; Kratchmarova, I.; Kristensen, D. B.;; Steen, H. P., A.; Mann, M.: <Stable Isotope Labeling by Amino Acids in Cell culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics.pdf>. Molecular & cellular proteomics : MCP 2002, 1, 376-86.
    (65) Zieske, L. R.: A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. Journal of experimental botany 2006, 57, 1501-8.
    (66) Pichler, P.; Kocher, T.; Holzmann, J.; Mazanek, M.; Taus, T.; Ammerer, G.; Mechtler, K.: Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal. Chem. 2010, 6549–6558.
    (67) Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J.: Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP 2004, 3, 1154-69.
    (68) Thompson, A. S., J,; Kuhn, K.; Kienle, S.; Schwarz, J,; Schmidt, G,; Neumann, T,; Hamon, C.: Tandem mass tags a novel quantification strategy for comparative analysis of complex protein mixtures by MSMS. Analytical chemistry 2003, 75, 1895-904.
    (69) Dayon, L. H., A.; Licker, V.; Turck, N.; Kuhn, K.; Hochstrasser, D.F.; Burkhard, P. B.; Sanchez, J. C.: Relative Quantification of Proteins in Human cerebrospinal fluids by MSMS Using 6plex isobaric tags. Anal. Chem. 2008, 80, 2921-2931.
    (70) Burnette, W. N.: "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical biochemistry 1981, 112, 195-203.
    (71) Renart, J.; Reiser, J.; Stark, G. R.: Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 3116-20.
    (72) Towbin, H.; Staehelin, T.; Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 1979, 76, 4350-4.
    (73) Kawaguchi, T.; Sata, M.: Importance of hepatitis C virus-associated insulin resistance: therapeutic strategies for insulin sensitization. World journal of gastroenterology : WJG 2010, 16, 1943-52.
    (74) Bose, S. K.; Ray, R.: Hepatitis C virus infection and insulin resistance. World journal of diabetes 2014, 5, 52-58.
    (75) Oono, T.; Yamasaki, T.; Zaitsu, J.; Saeki, I.; Iwamoto, T.; Harima, Y.; Marumoto, Y.; Hidaka, I.; Urata, Y.; Ishikawa, T.; Takami, T.; Segawa, M.; Uchida, K.; Terai, S.; Kunitugu, I.; Tanabe, T.; Sakaida, I.: Association of tyrosine with insulin resistance in hepatitis C virus-related chronic liver disease. Hepatology research : the official journal of the Japan Society of Hepatology 2013.
    (76) Holgado-Madruga, M.; Emlet, D. R.; Moscatello, D. K.; Godwin, A. K.; Wong, A. J.: A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 1996, 379, 560-4.
    (77) Shan, X.; Miao, Y.; Fan, R.; Song, C.; Wu, G.; Wan, Z.; Zhu, J.; Sun, G.; Zha, W.; Mu, X.; Zhou, G.; Chen, Y.: Suppression of Grb2 expression improved hepatic steatosis, oxidative stress, and apoptosis induced by palmitic acid in vitro partly through insulin signaling alteration. In vitro cellular & developmental biology. Animal 2013, 49, 576-82.
    (78) Lafrenie, R. M. B., M. R.; Orr, F. W.: Adhesion molecules and their role in cancer metastasis. cell Biophysics 1993, 23.
    (79) Hyodo, K.; Mine, A.; Taniguchi, T.; Kaido, M.; Mise, K.; Taniguchi, H.; Okuno, T.: ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. Journal of virology 2013, 87, 163-76.
    (80) Matto, M.; Sklan, E. H.; David, N.; Melamed-Book, N.; Casanova, J. E.; Glenn, J. S.; Aroeti, B.: Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication. Journal of virology 2011, 85, 946-56.
    (81) Lindenbach, B. D.; Rice, C. M.: The ins and outs of hepatitis C virus entry and assembly. Nature reviews. Microbiology 2013, 11, 688-700.
    (82) Jones, D. M.; McLauchlan, J.: Hepatitis C virus: assembly and release of virus particles. The Journal of biological chemistry 2010, 285, 22733-9.

    QR CODE