研究生: |
曾彥程 Tseng, Yen-Cheng |
---|---|
論文名稱: |
鉑錫合金觸媒對於乙醇氧化反應表現與機構之探討 Mechanistic investigation of ethanol oxidation reaction on PtSn bimetals |
指導教授: |
王禎翰
Wang, Jeng-Han |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 乙醇氧化 、電化學 、鉑 、錫 、XPS |
英文關鍵詞: | EOR, Electrochemistry, Platinum, Tin, XP2 |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.008.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:187 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要探討Pt及PtSn合金觸媒對於乙醇氧化反應的催化活性與觸媒穩定度,並分析其產物及反應機構。以含浸法合成觸媒,並利用粉末繞射分析儀 (XRD) 、能量散射光譜儀 (EDS) 及X光光電子光譜 (XPS) 鑑定觸媒的晶格結構、元素組成以及各元素氧化態。以電位儀利用循環伏安法 (CV) 及計時安培法 (CA) 檢測觸媒在乙醇氧化反應中的反應活性表面積,催化活性與穩定度,最後再以傅立葉紅外光光譜儀分析反應後產物,推測反應途徑。在實驗的結果中我們觀察到,因Sn的加入會對Pt的氧化態造成影響,可以幫助乙醇吸附以及反應的活性與穩定度。實驗結果中發現合金的表現確實都比單金屬Pt來的好,而在不同比例的PtSn合金中以Pt5Sn1的表現最佳。另外在紅外光譜儀的結果中顯示乙酸為主要的反應產物,也間接說明了釋出4電子的C2路徑為乙醇氧化反應的主要反應途徑。
The present study investigates ethanol oxidation reactions (EOR), the anodic reactions for direct ethanol fuel cells (DDEFC), on Pt and PtSn alloys with the ratios of Pt/Sn = 10/1, 5/1, 3/1, 1/1 and 1/3 (Pt¬10Sn1, Pt¬5Sn1, Pt¬3Sn1, Pt¬1Sn1, Pt¬1Sn3) on carbon black XC-72. All bimetallic catalysts are synthesized by impregation method and characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) to confirm the cystal structure, composition and oxidation state of each element. The fabricated catalysts have been examined by the electrochemical tests of cyclic voltammetry (CV) and chronoamperometry (CA) to study the ECSA, EOR activity and stability. Furthermore, we employed in situ FTIR to investigate the product evolution in the reaction for the mechanism understanding. The experimental observation found that proper amount of Sn addition can change the oxidation state of Pt to strengthen the ethanol adsorption and improve the EOR activity and stability. As a result, Pt5Sn1 has the best EOR performance. Additionally, the FTIR spectra show the main product on those PtSn bimentals is acetic acid corresponding to the four – electron – oxidation pathway.
1. Ethanol Oxidation Reaction on Tandem Pt/Rh/SnOx Catalyst. Catalysts, 2017. 7(9): p. 246.
2. Parreira, L.S., et al., PtSn Electrocatalyst Supported on MWCNT-COOH: Investigating the Ethanol Oxidation Reaction. ChemElectroChem, 2017. 4(8): p. 1950-1958.
3. Rizo, R., et al., Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1)/C and PtSn(1:1)/C Catalysts. Molecules, 2016. 21(9).
4. Chen, D.J. and Y.J. Tong, Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst. Angew Chem Int Ed Engl, 2015. 54(32): p. 9394-8.
5. Chung, D.Y., K.-J. Lee, and Y.-E. Sung, Methanol Electro-Oxidation on the Pt Surface: Revisiting the Cyclic Voltammetry Interpretation. The Journal of Physical Chemistry C, 2016. 120(17): p. 9028-9035.
6. Ting, C.-C., et al., Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect. Applied Surface Science, 2017. 416: p. 365-370.
7. Antoniassi, R.M., et al., Synthesis of Pt+SnO 2 /C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell. Applied Catalysis B: Environmental, 2017. 218: p. 91-100.
8. Durst, J., et al., Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. Journal of the Electrochemical Society, 2014. 162(1): p. F190-F203.
9. Bach Delpeuch, A., et al., Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study. Applied Catalysis B: Environmental, 2016. 181: p. 672-680.
10. Li, M., et al., The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochimica Acta, 2013. 104: p. 454-461.
11. Amani, M., et al., Investigation of methanol oxidation on a highly active and stable Pt–Sn electrocatalyst supported on carbon–polyaniline composite for application in a passive direct methanol fuel cell. Materials Research Bulletin, 2015. 68: p. 166-178.
12. Antolini, E., Catalysts for direct ethanol fuel cells. Journal of Power Sources, 2007. 170(1): p. 1-12.
13. Siller-Ceniceros, A.A., et al., Innovative functionalization of Vulcan XC-72 with Ru organometallic complex: Significant enhancement in catalytic activity of Pt/C electrocatalyst for the methanol oxidation reaction (MOR). Applied Catalysis B: Environmental, 2017. 209: p. 455-467.
14. Calvillo, L., et al., In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry, 2017.
15. Du, W., et al., Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol. J Am Chem Soc, 2014. 136(31): p. 10862-5.
16. Rizo, R., et al., On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Applied Catalysis B: Environmental, 2017. 200: p. 246-254.
17. Lei, F., et al., One-pot synthesis of Pt/SnO 2 /GNs and its electro-photo-synergistic catalysis for methanol oxidation. International Journal of Hydrogen Energy, 2016. 41(1): p. 255-264.
18. Velázquez-Palenzuela, A., et al., Sn-modified carbon-supported Pt nanoparticles synthesized using spontaneous deposition as electrocatalysts for direct alcohol fuel cells. International Journal of Hydrogen Energy, 2013. 38(36): p. 16418-16426.
19. Levendorf, A.M., S.-G. Sun, and Y.J. Tong, In Situ FT-IR Investigation of Methanol and CO Electrooxidation on Cubic and Octahedral/Tetrahedral Pt Nanoparticles Having Residual PVP. Electrocatalysis, 2014. 5(3): p. 248-255.
20. Ustarroz, J., et al., Electrodeposition of Highly Porous Pt Nanoparticles Studied by Quantitative 3D Electron Tomography: Influence of Growth Mechanisms and Potential Cycling on the Active Surface Area. ACS Appl Mater Interfaces, 2017. 9(19): p. 16168-16177.
21. Jacob, J.M., et al., Electro-oxidation of ethanol on ternary Pt–Sn–Ce/C catalysts. Applied Catalysis B: Environmental, 2015. 165: p. 176-184.
22. Lu, G.-P., et al., Highly active Pt catalysts promoted by molybdenum-doped SnO2 for methanol electrooxidation. International Journal of Hydrogen Energy, 2015. 40(17): p. 5889-5896.
23. Fenoy, G.E., et al., Layer-by-layer assemblies of highly connected polyelectrolyte capped-Pt nanoparticles for electrocatalysis of hydrogen evolution reaction. Applied Surface Science, 2017. 416: p. 24-32.
24. Liu, H., et al., Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Research, 2017. 10(10): p. 3324-3332.
25. Higuchi, E., et al., Ethanol oxidation reaction activity of highly dispersed Pt/SnO2 double nanoparticles on carbon black. Journal of Power Sources, 2011. 196(4): p. 1730-1737.