研究生: |
李東鴻 Li, Tung-Hung |
---|---|
論文名稱: |
基於智慧型倒階同動控制之三軸龍門式定位平台 Intelligent Backstepping Synchronous Control for Three-Axis Gantry Positioning Stage |
指導教授: |
陳瑄易
Chen, Syuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 動態面控制 、函數鏈結模糊類神經網路 、龍門式定位平台 、非整數階倒階控制 、雙平行線型馬達 、同動控制 |
英文關鍵詞: | Dynamic Surface Control, Functional-Link-Based Neural Fuzzy System, Gantry Position Stage, Non-Integer Order Backstepping Control, Parallel Linear Motors, Synchronous Control |
DOI URL: | https://doi.org/10.6345/NTNU202202689 |
論文種類: | 學術論文 |
相關次數: | 點閱:95 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以個人電腦控制為基礎,發展具有高精度與高強健性之智慧型同動控制系統於龍門式定位平台。龍門式定位平台係利用三部永磁線型同步馬達組合成H型運動模式之雙軸定位平台,其中由於垂直方向是由兩部平行馬達共同驅動,故同動控制遂成為研究龍門式定位平台之重要課題。有鑑於此,本論文先發展單軸馬達倒階控制系統,再將非整數階微積分計算加入其中,以增加可控制參數自由度之方式改善控制效能。接著,為了加強系統的強健性,使用函數鏈結模糊類神經網路對系統不確定項進行估測與補償。而為了達到雙平行馬達之同動,本論文基於單軸控制之基礎,進一步以Lagrange 方程式建立三自由度龍門動態模型,同時為了避免倒階控制中微分膨脹之問題,於設計過程中引入一階低通濾波器成為動態面控制,而為了提升各軸之控制精準度與雙軸之同動效果,亦引入非整數階微積分系統於動態面控制。最後為了確保系統在參數變化、外在干擾與摩擦力等影響下系統均具備強健性,再利用函數鏈結模糊類神經網路直接補償系統之不確定項,並進行控制系統之穩定性分析。本論文所發展之控制系統皆由個人電腦實現,並由實作結果驗證所設計之控制理論有效性與可行性。
關鍵字:動態面控制、函數鏈結模糊類神經網路、龍門式定位平台、非整數階倒階控制、雙平行線型馬達、同動控制
The objective of this thesis is to develop personal computer (PC) based high precision and robust intelligent synchronous control systems for a gantry position stage. The gantry position stage is composed of H-type three permanent magnet linear synchronous motors (PMLSMs) in which the vertical direction is driven by two parallel motors. In this regard, the synchronous control has become an important research task of gantry position stage. In this thesis, a backstepping control (BC) system is developed to control the single axis PMLSM first. Then the non-integer calculus is added to increase the degree of freedom of controlled parameter for the improvement of control performance. Moreover, in order to strengthen the robustness of the system, a functional-link-based fuzzy neural network (FLFNN) is developed to estimate and compensate the system uncertainties. In order to achieve the synchronous control of the parallel motors, a Lagrange’s equation is used to establish the three-degree-of-freedom (3-DOF) dynamic model of gantry stage. Furthermore, to avoid differential expansion problem in the design of the BC, a first-order low-pass filter is introduced to perform dynamic surface control (DSC). For the purpose of enhancing the control accuracy of each axis and the synchronization performance of the parallel axes. A non-integer order calculus is further utilized for DSC. Finally, in order to ensure the robustness of the system under the influences of parameters variations and external interferences. In addition, the FNFS is employed to compensate the system uncertainties directly. All the control systems developed by this thesis were realized by PC to verify the effectiveness and feasibility experimentally.
[1] K. W. C. Lai, A. Gaitas, N. Xi, R. Yang and C. K. M. Fung, “Development and testing of nano robot end effector for cell electrophysiology and elastography studies,” IEEE International Conference on Nanotechnology, pp. 1066-1069, 2011.
[2] M. Al-Fandi, M. A. Jaradat, M. Al-Rousan and S. Jaradat, “A living biological nano robot as self-navigator sensor for diseases,” Middle East Conference on Biomedical Engineering, pp. 176-179, 2011.
[3] M. Y. Wang, L. Y. Li, D. h. Pan, Y. B. Tang and Q. B. Guo, “High-Bandwidth and Strong Robust Current Regulation for PMLSM Drives Considering Thrust Ripple,” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6646-6657, 2016.
[4] K. Cho, J. Kim, S. B. Choi and S. Oh, “A High-Precision Motion Control Based on a Periodic Adaptive Disturbance Observer in a PMLSM,“ IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2158-2171, 2015.
[5] D. J. Liu, C. J. Che and Z. X. Zhou, “Permanent magnet synchronous motor control system based on auto disturbances rejection controller,“ International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), pp. 8-11, 2011.
[6] C. L. Li and D. M. Wang, “The Permanent Magnet Synchronous Linear Motor Position Control Based on Fuzzy Neural Network,“ International Conference on Intelligent Networking and Collaborative Systems, pp. 602-606, 2013.
[7] F. J. Lin, J. C. Hwang, P. H. Chou and Y. C. Hung, “FPGA-Based Intelligent-Complementary Sliding-Mode Control for PMLSM Servo-Drive System,“ IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2573-2587, 2010.
[8] L. M. Wang and J. C. Chen, “Integrated strategy of Permanent Magnet Linear Synchronous Motor based on sliding mode control and repetitive control,“ International Conference on Computer Science and Information Technology, pp. 652-655, 2010.
[9] 維基百科,https://goo.gl/z3YDCi
[10] L. A. Zadeh, "Fuzzy sets", Information and Control, vol. 8, pp. 338-353, 1965.
[11] K. H. Peng and H. Zhang, “Mutual information-based RBM neural networks,” International Conference on Pattern Recognition (ICPR), pp. 2458-2463, 2016.
[12] H. M. Wang, S. K. Duan, T. W. Huang, L. D. Wang, and C. D. Li, “Exponential Stability of Complex-Valued Memristive Recurrent Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems , vol. 28, no. 3, pp. 766-771, 2017.
[13] R. G. Fu, B. Li, Y. H. Gao, and P. Wang, “Content-based image retrieval based on CNN and SVM,” IEEE International Conference on Computer and Communications (ICCC), pp. 638-642, 2016.
[14] C. H. Chen, C. J. Lin and C. T. Lin, “A Recurrent Functional-Link-Based Neural Fuzzy System and Its Applications,” IEEE Symposium on Computational Intelligence in Image and Signal Processing, pp. 415-420, 207.
[15] C. H. Chen, C. J. Lin and C. T. Lin, “A Functional-Link-Based Neuro fuzzy Network for Nonlinear System Control,” IEEE Journals & Magazines, vol. 16, no. 5, pp. 1362-1378, 2008.
[16] C. H. Chen, C. T. Lin and C. J. Lin, “A Functional-Link-Based Fuzzy Neural Network for Temperature Control,” IEEE Symposium on Foundations of Computational Intelligence, pp. 53-58, 2007.
[17] 陳政宏,以函數鏈結為基礎之類神經模糊網路及其應用,博士論文,國立交通大學電機與工程學系,新竹,2008。
[18] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control Systems, vol. 12, no. 3, pp. 7-17, 1992.
[19] H. Echeikh, R. Trabelsi, A. Iqbal, N. Bianchi and M. F. Mimouni, “Comparative study between the rotor flux oriented control and non-linear backstepping control of a five-phase induction motor drive – an experimental validation,” IET Power Electronics, vol. 9, no. 13, pp. 2510-2521, 2016.
[20] F. J. Lin, P. H. Shieh and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
[21] R. J. Wai, J. X. Yao, and J. D. Lee, “Backstepping Fuzzy-Neural-Network Control Design for Hybrid Maglev Transportation,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 2, pp. 302-317, 2015.
[22] T. K. Roy, M. F. Pervej, F. K. Tumpa and L. C. Paul, “Nonlinear adaptive controller design for velocity control of a DC motor driven by a DC-DC buck converter using backstepping approach,” International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE), pp. 1-4, 2016.
[23] F. Petit, A. Daasch and A. A. Schäffer, “Backstepping Control of Variable Stiffness Robots, ” IEEE Transactions on Control Systems Technology, vol. 23, no. 6, pp. 2195-2202, 2015.
[24] G. Q. Xia, X. C. Shao and J. J. Xue, “Command filtered backstepping control for dynamic positioning ships, ” OCEANS - MTS/IEEE Washington, pp. 1-4, 2015.
[25] Y. Qiu, X. g. Liang, Z. y. Dai, J. x. Cao and Y. Q. Chen, “Backstepping dynamic surface control for a class of non-linear systems with time-varying output constraints,” IET Control Theory & Applications, vol. 9, no. 15, pp.2312–2319,2015.
[26] Y. M. Li, S.C. Tong and T. S. Li, “Adaptive Fuzzy Output Feedback Dynamic Surface Control of Interconnected Nonlinear Pure-Feedback Systems,” IEEE Transactions on Cybernetics, vol. 45, no. 1, pp.138–149,2015.
[27] V. Utkin, “Variable Structure systems with sliding modes,” IEEE Trans. Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.
[28] C. Li, B. Yao, X. Zhu, and Q. Wang, “Adaptive robust synchronous control with dynamic thrust allocation of dual drive gantry stage,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 316–321, 2014.
[29] F. J. Lin, H. J. Hsieh, P. H. Chou, and Y. S. Lin, “Digital signal processor-based cross-coupled synchronous control of dual linear motors via functional link radial basis function network, ”IET Control Theory Application, vol. 5, no. 4, pp. 552-564, 2011.
[30] 周柏寰,智慧型同動控制之龍門式定位平台,博士論文,國立東華大學電機工程學系,花蓮,2011。
[31] 劉東昇,龍門式定位平台之同動控制系統設計與實現,碩士論文,國立臺灣師範大學電機工程學系,台北,2016。
[32] https://goo.gl/xHLhzg
[33] Y. S. Kung, C. C. Huang and M. H. Tsai, “FPGA Realization of an Adaptive Fuzzy Controller for PMLSM Drive,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 2923-2932, 2009.
[34] F. J. Lin and P. H. Shen, “Linear synchronous motor servo drive based on adaptive wavelet neural network,” International Symposium on Computational Intelligence in Robotics and Automation, pp. 673–678, 2005.
[35] F. J. Lin, P. H. Chou and C. S. Chen, “DSP-based synchronous control of dual linear motors via sugeno type fuzzy neural network compensator,” International Conference on Electrical Machines and Systems, pp. 1–6, 2011.
[36] C. S. Chen, P. H. Chou P. H. and F. J. Lin, “DSP-based cross-coupled synchronous control for dual linear motors via functional link radial basis function network,” IEEE International Conference on Fuzzy Systems(FUZZ), pp. 872-878, 2011.
[37] 美國copley controls公司,http://www.copleycontrols.com
[38] R. L. Magin, “Fractional calculus in bioengineering: A tool to model complex dynamics,” International Carpathian Control Conference (ICCC), pp. 464–469, 2012.
[39] Q. Xue and H. B. Duan, “Robust attitude control for reusable launch vehicles based on fractional calculus and pigeon-inspired optimization,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 89-97, 2017.
[40] S. Ghasemi, A. Tabesh and J. A. Marnani, “Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators,” IEEE Transactions on Energy Conversion, vol. 29, no. 3, pp. 780-787, 2014.
[41] C. Flores, V. Milanés and F. Nashashibi, “Using fractional calculus for Cooperative car-following Control,” International Conference on Intelligent Transportation Systems (ITSC), pp. 907–912, 2016.
[42] M. D. Ortigueira, “On the “walking dead” derivatives: Riemann-Liouville and Caputo,” International Conference on Fractional Differentiation and Its Applications (ICFDA), pp. 907–912, 2016.
[43] L. Barhoumi, H. Bemri and D. Soudani, “Discretization of uncertain linears systems with time delay via Euler’s and Tustin’s approximations,” IEEE Conference Control Engineering & Information Technology (CEIT), pp. 1-6, 2016.
[44] C. F Hsu, “Adaptive functional-link-based neural fuzzy controller design for a DC gear motor driver,” Neural Comput, April 12, pp.303–313, 2013.
[45] C. F. Hsu, T. T. Lee and K. Tanaka, “Intelligent nonsingular terminal sliding-mode control via perturbed fuzzy neural network,” Engineering Applications of Artificial Intelligence, vol. 45, August 3, pp. 339–349,2015.
[46] Y. H. Huang, R. Y. Qi, B. Jiang and G. Tao, “Adaptive failure compensation design for hypersonic vehicle based on dynamic surface Backstepping control,”
Chinese Control Conference, pp.5305–5310, 2012.
[47] S. I. Han, J. M. Lee, “Adaptive dynamic surface control with sliding mode control and RWNN for robust positioning of a linear motion stage,” Mechatronics, Vol. 22, no 2, pp. 222-238, 2012.
[48] C. S. Teo, K. K. Tan, S. Y. Lim, S. Huang and E. B. Tay, “Dynamic modeling and adaptive control of a H-type gantry stage,” Mechatronics, vol. 17, no. 7, pp. 361-367, 2007.
[49] C. S. Teo, K. K. Tan, S. Huang and S. Y. Lim, “Dynamic modeling and adaptive control of a multi-axial gantry stage,” International Conference on Systems, Man and Cybernetics, pp.3374–3379, 2005.
[50] F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “Three-Degree-of-Freedom Dynamic Model-Based Intelligent Nonsingular Terminal Sliding Mode Control for a Gantry Position Stage,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 971-985, 2012.