簡易檢索 / 詳目顯示

研究生: 廖書賢
Shu-Hsien Liao
論文名稱: 高溫超導量子干涉元件於低磁場核磁共振及磁振造影之應用
The Application of High-Tc SQUID to Low-Field NMR and MRI
指導教授: 洪姮娥
Horng, Herng-Er
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 81
中文關鍵詞: 超導量子干涉元件核磁共振磁振造影
英文關鍵詞: SQUID, NMR, MRI
論文種類: 學術論文
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們應用預先極化場的技術以及高溫超導量子干涉元件磁量計發展了一套低磁場核磁共振及磁振造影系統,其工作磁場強度為微特斯拉。磁共振系統的參數包括:預先極化場強度(Bp)、預先極化的時間(TBp)與預先極化後到脈衝場開啟的時間區間(Td)等都已最佳化。並於實驗中改變TBp與Td可以得到磁矩縱向的鬆弛時間。此外雷射光激發稀有氣體系統也已發展並整合於低磁場磁共振系統中,並分析其特性。而在水樣品的磁共振及磁振造影方面,為了改進我們的低磁場磁共振及磁振造影系統,我們使用的磁通轉換器並增強了預先極化場的強度以及提高了均勻場的均勻度。在101 T下得到線寬僅有0.9 Hz的磁共振光譜。我們也測量了三氟乙醇中,質子與氟原子間偶合的共振譜線。此外我們使用強度為24.6 T/m的梯度磁場,我們磁振造影系統的空間解析度可達到1毫米。

    We applied prepolarization technology and high-Tc superconducting quantum interference device (SQUID) magnetometer to develop a Low-field NMR and MRI system in a microtesla magnetic field. The parameters to optimize the measurement of NMR detection were investigated. These parameters include the pre-polarization field, Bp, the pre-polarization time, TBp, and the delay time, Td, to turn on pulses after turning off the pre-polarization field. The decreasing of magnetization with the increasing Td of the applied pulse was analyzed to determine the longitudinal relaxation time. Otherwise, the optical pumping system was also developed and integrated in our low-field MRI system. The characteristics of hyperpolarized noble gas in our system had been investigated. For water NMR and MRI, we improved our high-Tc SQUID based low-field NMR and MRI system by using a flux transformer, increasing the strength of pre-polarization field and improving the homogeneity of the static field. The NMR spectrum with narrow linewidth in the order of 0.9 Hz at 101 uT in a single shot was obtained. We also detected the proton-fluorine couplings in trifluoroethanol. With a gradient field of 24.6 uT/m, we obtained a spatial resolution given by dz = 2*Pi*df/r*G = 1 mm in proton magnetic resonance imaging, where  = 42.58 kHz/mT.

    Chapter 1. Introduction……………………………………………………………………………………………1 1.1 Introduction to low-field NMR…………………………………………………………………1 1.2 The principle of nuclear magnetic resonance (NMR)……………8 1.3 Introduction to SQUID magnetometer…………………………………………………12 Chapter 2. Experimental Details……………………………………………………………………16 2.1 Detail of the SQUID–based low-field NMR system…………………16 2.2 Spin exchange optical pumping system integrated in low-field NMR System……………………………………………………………………………………………………………20 Chapter 3. Results and Discussion………………………………………………………………24 3.1 The results of low-field NMR for Hyperpolarized 3He……24 3.2 The early results of low-field NMR for water………………………34 3.3 Improvement in low-field NMR and MRI system by increasing the strength of pre-polarization field and using a flux transformer………………………………………………………………………………………………………45 3.4 Improvement in the local spatial resolution of low-field MRI system by using magnetic fluid…………………………………………………………………………………………52 3.5 Improvement in the field homogeneity to decrease the line-width and improve the spatial resolution for low-field MRI………………………………………………………………………………………………………………………………………………56 Chapter 4. Conclusion………………………………………………………………………………………………64 Appendix…………………………………………………………………………………………………………………………………67 Reference………………………………………………………………………………………………………………………………73 Acknowledgements……………………………………………………………………………………………………………81

    1. J.J. Heckman, M.P. Ledbetter, and M.V. Romalis, “Enhancement of SQUID-Detected NMR Signals with Hyperpolarized Liquid 129Xe in a 1 μT Magnetic Field”, Phy. Rev. Lett. 91, 067601 (2003).
    2. J.R. McFall, “Human lung air spaces: potential for MR imaging with hyperpolarized He3”, Radiology, 200, 553 (1996).
    3. T.G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei”, Rev. Mod. Phys. 69, 629 (1997).
    4. M.S. Albertet, G.D. Gates, B. Driehuys, W. Happer, B. Saam, C.S. Springer, and A. Wishnia, “Biological magnetic resonance imaging using laser-polarized 129Xe”, Nature (London) 370, 199 (1994).
    5. H. E. Möller, X. Josette Chen, B. Saam, K.D. Hagspiel, G. Allan, Hjohnson, T. A. Altes, E.E. de Lange, and Hans-Ulrich Kauczor, “MRI of the lungs using hyperpolarized noble gases”, Magn. Reson. Med., 47, 1029 (2002).
    6. S. Appelt, F.W. Häsing, H. Kühn, J. Perlo, and B. Blülich, “Mobile High Resolution Xenon Nuclear Magnetic Resonance Spectroscopy in the Earth's Magnetic Field”, Phys. Rev. Lett. 94, 197602 (2005).
    7. W. Shao, G. Wang, R. Fuzesy, E.W. Hughes, B.A. Chronik, G.C. Scott, S.M. Conolly, and A. Macovski, “Low readout field magnetic resonance imaging of hyperpolarized xenon and water in a single system”, Appl. Phys. Lett. 80, 2032 (2002).
    8. W. Shao, G. Wang, R. Fuzesy, E.W. Hughes, B.A. Chronik, G.C. Scott, S.M. Conolly, and A. Macovski, “Low readout field magnetic resonance imaging of hyperpolarized xenon and water in a single system”, Appl. Phys. Lett. 80, 2032 (2002).
    9. Sunil Saxena, Adam J. Moulé, Hans-Marcus L. Bitter, Juliette A. Seeley, Robert McDermott, John Clarke, and Alexander Pines, “Laser Polarized 129Xe NMR and MRI at Ultra-Low Magnetic Fields, Annjoe Wong-Foy”, J. Magn. Res. 157 (2), 235 (2002).
    10. Dinh M. TonThat, M. Ziegeweid, Y.-Q. Song, E.J. Munson, S. Appelt, A. Pines, John Clarke, “SQUID detected NMR of laser-polarized xenon at 4.2 K and at frequencies down to 200 Hz”, Chemical Physics Letters 272 245-249 (1997)
    11. E. Babcock, I. Nelson, S. Kadlecek, B. Driehuys, L.W. Anderson, F.W. Hersman, and T.G. Walker, “Hybrid Spin-Exchange Optical Pumping of 3He”, Phys. Rev. Lett., 91, 123003 (2003).
    12. M.P. Ledbetter, and M.V. Romalis, “Nonlinear Effects from Dipolar Interactions in Hyperpolarized Liquid 129Xe”, Phys. Rev. Lett. 89, 287601 (2002)
    13. M.A. Bouchiat, T.R. Carver, and C.M. Varnum,” Nuclear Polarization in He3 Gas Induced by Optical Pumping and Dipolar Exchange”, Phys. Rev. Lett. 5, 373 (1960).
    14. M. Savukov, S.-K. Lee, and M.V. Romalis, “Optical detection of liquid-state NMR”, Nature, 442, 1021 (2006).
    15. M. Savukov, and M.V. Romalis, “NMR Detection with an Atomic Magnetometer”, phys. Rev. Lett. 94, 123001 (2005).
    16. K. Schlenga, R.F. McDermott, and J. Clarke, “High-Tc SQUIDs for low-field NMR and MRI of room temperature samples”, IEEE Trans. Appl. Supercon. 9, 4424 (1999).
    17. S. Kumar, B.D. Thorson, and W.F. Avrin, “Broadband SQUID NMR with Room-Temperature Samples”, J. Magn. Reson. Ser. B, 107, 252 (1995).
    18. Y.S. Greenberg, ” Application of superconducting quantum interference devices to nuclear magnetic resonance”, Rev. Mod. Phys. 70, 175 (2002).
    19. Dinh M. TonThat and John Clarke, “Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz”, Rev. Sci. Instrum. 67, 2890(1996)
    20. M.P. Augustine, D.M. TonThat, J. Clarke, “SQUID detected NMR and NQR”, Solid State Nuclear Magnetic Resonance, 11, (no.1-2), 139-56 (1998)
    21. Michael, Mössle, Whittier R. Myers SeungKyun Lee, Nathan Kelso, Michael Hatridge, Alexander Pines and John Clarke, “SQUID-Detected in Vivo MRI at Microtesla Magnetic Fields” , IEEE Trans. Appl. Supercond. 15, 757-760 (2005)
    22. Michael Mößle, Song-I Han, Whittier R. Myers, Seung-Kyun Lee, Nathan Kelso, Michael Hatridge, Alexander Pines and John Clarke, “SQUID-Detected Microtesla MRI in the Presence of Metal”, Journal of Magnetic Resonance 179, 146-151 (2006)
    23. Whittier R. Myers, Michael Mössle and John Clarke, “Correction of Concomitant Gradient Artifacts in Experimental Microtesla MRI”, Journal of Magnetic Resonance 177, 274-284 (2005).
    24. SeungKyun Lee, Erwin L. Hahn and John Clarke, “Static Nuclear Spin Polarization Induced in a Liquid by a Rotating Magnetic Field”, Phys. Rev. Lett. 96, 257601 (2006
    25. Vadim S. Zotev, Andrei N. Matlachov, Petr L. Volegov, Henrik J. Sandin, Michelle A. Espy, John C. Mosher, Algis V. Urbaitis, Shaun G. Newman, and Robert H. Kraus, Jr., “Multi-Channel SQUID System for MEG and Ultra-Low-Field MRI”, IEEE Trans. Appl. Supercon. 17, 839 (2007)
    26. Hugh C. Seton, Sebastian W. Rieger, and James M. S. Hutchison, “Tuned SQUID-MRI System With Resonant Frequency Adjustment”, IEEE Trans. Appl. Supercon. 17, 850 (2007)

    27. Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”, J. Appl. Phys. 102, 033914 (2007).
    28. M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H. Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans. Appl. Supercon. 15, 635 (2005).
    29. A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines , “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A, 108, 957-963 (2004).
    30. R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA , 101, 7857 (2004).
    31. M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
    32. R. McDermott, A.H. Trabesinger, M. Mück, E.L. Haln, A. Pines, and J. Clarke, “Liquid-State NMR and Scalar Couplings in Microtesla Magnetic Fields ”, Science 295, 2247 (2002).
    33. Kuen-Lin Chen, Jau-Han Chen, Chuan-Chin Lin, Chiu-Hsien Wu, Ji-Cheng Chen, Herng-Er Horng, and Hong-Chang Yang*,” High-Tc Electronic Planar Gradiometer Constructed from Magnetometers on a Chip”, IEEE Trans. Appl. Supercon. 15, 805 (2005).
    34. C. H. Wu, M. H. Hsu, K. L. Chen, J. C. Chen, J. T. Jeng, T. S. Lai, Herng-Er Horng and Hong-Chang Yang*, “Highly sensitive YBCO serial SQUID magnetometer with flux focuser”, Supercon. Sci. Technol. 19, S246 (2006)
    35. Hong-Chang Yang, Shu-Yun Wang, and Jen-Tzong Jeng, Herng-Er Horng, “Off-axis second order HTS rf SQUID gradiometer for magnetocardiography”, IEEE Trans. Appl. Supercon. 13, 360-363 (2003).
    36. S.H. Liao, S.C. Hsu, C.C. Lin, H.E. Horng, J.C. Chen, M.J. Chen, C.H. Wu, and H.C. Yang, “High-Tc Gradiometer system for magnetocardiography in an unshielded environment”, Supercon. Sci. Technol. 16, 1426-1429 (2004).
    37. Hong-Chang Yang*, Tsung-Yeh Wu, Herng-Er Horng, Chau-Chung Wu, S.Y. Yang, Shu-Hsien Liao, Chiu-Hsien Wu, J.T. Jeng, J.C. Chen, Kuen-Lin Chen, and M.J. Chen, “Scanning High-Tc SQUID Imaging System for Magnetocardiography”, Supercon. Sci. Technol. 19, S297 (2006).
    38. H.E. Horng, Jen-Tzong Jeng, Hong-Chang Yang, and J.C. Chen, ”NondestructiveEvaluation of Cracks with High-Tc SQUIDs and Perspective”, Trans. MRS Jpn., 29, 1289 (2004).
    39. J.T. Jeng, H.E. Horng and H.C. Yang, “Detection of small cracks using high-Tc SQUIDs in unshielded environment”, Superconductor Science & Technology, 15, 416-420 (2002).
    40. H.E. Horng, J.T. Jeng, H.C. Yang and J.C. Chen, “Evaluation of the flaw depth using high-Tc SQUIDs”, Physica C 367, 303-307 (2002)
    41. J.T. Jeng, H.E. Horng, H.C. Yang, J.C. Chen and J.H. Chen, “Simulation of the magnetic field due to defects and verification using high-Tc SQUID”, Physica C 367, 298-302 (2002)
    42. J.T. Jeng, S.Y. Yang, H.E. Horng, and H.C. Yang, “Detection of Deep Flaws by Using a HTS-SQUID in Unshielded Environment”, IEEE Trans. Appl. Supercond., 11, 1295 (2001)
    43. Y. Zhang, L. Qiu, H. Krause, S. Hartiwig, M. Burghoff, and L. Trahms, “Liquid state nuclear magnetic resonance at low fields using a nitrogen cooled superconducting quantum interference device”, Appl. Phys. Lett. 90, 182503 (2007).
    44. L. Qiu, Y. H. Krause, and A.I. Braginski, M. Burghoff and L. Trahms, “Nuclear magnetic resonance in the earth's magnetic field using a nitrogen-cooled superconducting quantum interference device”, Appl. Phys. Lett. 91, 072505 (2007).
    45. Zhi-Pei Liang and Paul C. Lauterbur,Principles of Mageetic Resonance Imaging: A Signal Processing Perspective
    46. Brend Seeber, Handbook of Applied Superconductivity
    47. Neeral Khare, Handbook of High-Temperature Superconductor Electronics
    48. H.C Yang, S.H. Liao, H.E. Horng,S.L. Kuo, H.H. Chen, and S. Y. Yang, “Enhancement of nuclear magnetic resonance in microtesla magnetic field with prepolarization field detected with high-Tc superconducting quantum interference device”, Appl. Phys. Lett. 88, 252505 (2006).
    49. H.C. Yang, H.E. Horng, S.H. Liao, C.H. Wu, J.C. Chen, K.L. Chen, M.J. Chen, and S.Y. Yang, “High-Tc superconducting interference devices and biomagnetic applications”, Korean J. Physical Society, 48, 1084 (2006).
    50. Martin Burghoff, Stefan Hartwig, Lutz Trahms, and Johannes Bernarding,” Nuclear magnetic resonance in the nanoTesla range”, Appl. Phys. Lett., 87, 054103(2005)
    51. V. Graf, F. Noack, and G. Béné, “Proton spin T1 relaxation dispersion in liquid H2O by slow proton-exchange”, J. Chem. Phys. 72, 861 (1980).
    52. S.K. Lee, M. Moble, W. Myers, N. Kelso, A.H. Trabesinger, A. Pines, and J. Clarke, “SQUID-Detected MRI at 132 μT with T1-Weighted Contrast Established at 10 μT–300 mT ”, Magn. Reson. Med. 53, 9 (2005)
    53. K. Schlenga, R. McDermott, John Clarke, R.E. de Souza, A. Wong-Foy, and A. Pines, “Low-field magnetic resonance imaging with a high-Tc dc superconducting quantum interference device”, Appl. Phys. Lett. 75, 3695 (1999).
    54. Y.R. Chemla, H.L. Grossman, Y. Poon, R. McDermott, R. Stevens, M.D. Aloer, and J. Clarke, “Ultrasensitive magnetic biosensor for homogeneous immunoassay”, Proc. Natl. Acad. Sci. U.S.A. 97, 14268 (2000)
    55. E. Sassier, Y. Monfort, C. Gunther, D. Robbes, O. Moreau, and H. Gilles, “A HTc superconducting quantum interference device preamplifier stage to detect 3He nuclear precession”, Rev. Sci. Instrum. 70, 3040 (1999).
    56. S.K. Lee, W.R. Myers, H.L. Crossman, H.-M. Cho, Y.R. Chemia, and J. Clarke, “Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor”, Appl. Phy. Lett. 81, 3094 (2002).
    57. R.E. de Souza, K. Schlenga, A. Wong-Foy, R. McDermott, A. Pines and John Clarke, “NMR and MRI Obtained with High Transition Temperature DC SQUIDs ”, J. Braz. Chem. Soc. 10, 307 (1999).
    58. H.C. Seton, J.M.S. Hutchison, D.M. Bussel, “A 4.2 K receiver coil and SQUID amplifier used to improve the SNR of low-field magnetic resonance images of the human arm”, Mea. Sci. Technol. 8, 198 (1997)
    59. A.N. Matlachov, P.L. Volegov, M.A. Espy, J.S. George, and R.H. Kraus Jr., “SQUID detected NMR in microtesla magnetic fields”, J. Magn. Reson. 170, 1 (2004).
    60. R.H. Koch, J.Z. Sun, V. foglietti, and W. Gallagher, “Flux dam, a method to reduce extra low frequency noise when a superconducting magnetometer is exposed to a magnetic field”, Appl. Phys. Lett. 67, 709 (1995).
    61. S. Kumar, R. Mathews, S.G. Haupt, D.K. Lathrop, M. Takigawa, J.R. Rozen, Rozen, S.L. Brown, R.H. Koch, ” Nuclear magnetic resonance using a high temperature superconducting quantum interference device”, Appl. Phys. Lett. 70, 1037 (1997).
    62. M.P. Augustine, A. Wong-Foy, J.L. Yarger, M. Tomaselli, A. Pines, D. M. Tonthat, and J. Clarke, ” Low field magnetic resonance images of polarized noble gases obtained with a dc superconducting quantum interference device “, Appl. Phys. Lett. 72, 1908 (1998).

    無法下載圖示 本全文未授權公開
    QR CODE