簡易檢索 / 詳目顯示

研究生: 陳香吟
Chen Shiang-Yin
論文名稱: 支鏈胺基酸搭配碳水化合物增補對下坡跑後蛋白質代謝的影響
The Effect of Branched-Chain Amino Acids and Carbonhydrate Supplementation on Protein Metabolism Following Downhill Running
指導教授: 林正常
Lin, Jung-Charng
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 胰島素皮質醇睪固酮肌酸激酶
英文關鍵詞: insulin, cortisol, testosterone, creatine kinase
論文種類: 學術論文
相關次數: 點閱:315下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的: 本研究目的在探討下坡跑運動後增補支鏈胺基酸與支鏈胺基酸+碳水化合物對運動後胰島素、睪固酮、皮質醇、尿素氮、肌酸酐與肌酸激酶的影響,並進一步評估對肌肉最大自主等長收縮肌力的影響。方法: 本研究將 24 名受試者 (身高 179.00 ± 7.83 公分; 體重 75.97 ± 10.96 公斤; 年齡 21.88 ± 2.07 歲; 最大攝氧量 53.08 ± 6.74 毫升/公斤/分鐘) 依據最大攝氧量數值,以平衡次序法分成三組: 支鏈胺基酸組 (BCAA 組)、支鏈胺基酸+碳水化合物組 (BCAA+CHO 組) 與安慰劑組 (PLA 組)。在進行 30 分鐘 70% VO2max 之下坡跑運動 (-15%) 前一天 (Pre 24 hr) 以及運動後兩天,受試者需接受膝伸肌群之最大自主等長收縮肌力測量。在各組實驗中,支鏈胺基酸與碳水化合物之攝取量分別為每次每公斤體重 232.50 mg 與 464.00 mg,且均於運動後第 15 分鐘與運動後第 24 小時 (測驗採血後) 進行增補。採血點: 運動前立即、運動後立即、運動後第 45、60 分鐘、24 與 48 小時 (Pre、Post 0、Post 45 min、Post 60 min、Post 24 hr 與 Post 48 hr)。結果: 在運動後第 24 小時,各組之最大自主等長收縮肌力皆顯著下降 (21-22%); 在運動後第 48 小時,BCAA 組之最大自主等長收縮肌力顯著高於 BCAA+CHO 與安慰劑組數值 (p< .05); 在運動後第 45 分鐘,BCAA 組之睪固酮/皮質醇比值顯著高於 BCAA+CHO 與安慰劑組; 在運動後第 45 分鐘, BCAA+CHO 組之胰島素濃度顯著高於 BCAA 與安慰劑組數值,但是其睪固酮/皮質醇比值卻顯著下降並且低於其他兩組; 比較運動後第 48 與 24 小時之 CK 差值 (ΔCK (Post 48 hr-Post 24 hr)),BCAA+CHO 組之降低幅度 (-36%) 顯著低於安慰劑組 (-13%) 並且與 BAAA 組 (-30%) 相似。結論: 30 分鐘 70% VO2max 之下坡跑運動誘發肌肉損傷後增補支鏈胺基酸可顯著提升運動後第 45 分鐘之睪固酮/皮質醇比值,更進一步顯著提升運動後第 48 小時之最大自主等長收縮肌力; 額外增補碳水化合物反而使睪固酮/皮質醇比值下降,對肌力產生些許恢復作用; 增補支鏈胺基酸+碳水化合物可使受試者之 ΔCK (Post 48 hr-Post 24 hr) 顯著低於安慰劑組,有利於降低升高的 CK 數值。

    Purpose: This study was designed to examine insulin, testosterone, cortisol, urea nitrogen, creatinine, creatine kinase and maximal voluntary isometric contraction (MVIC), following downhill running, with ingestion of either branched-chain amino acids (BCAA) alone or a BCAA-CHO mixture. Methods: According to VO2max, twenty four subjects (height 179.00 ± 7.83 cm; weight 75.97 ± 10.96 kg; age 21.88 ± 2.07 years; VO2max 53.08 ± 6.74 ml/kg/min) were voluntary to participate in this study and randomly assigned to three groups: BCAA (232.50 mg.kg-1.day-1, n=8), BCAA+CHO (232.50 mg.kg-1.day-1 BCAA plus 464.00 mg.kg-1.day-1 CHO, n=8), and PLA (232.50 mg.kg-1.day-1 placebo, n=8). Doses were provided 15 min and 24 hr post exercise. Before (Pre 24 hr) and after a 30-min downhill running (-15%) at 70% VO2max, MVIC for knee extensors were measured. Blood was sampled immediately prior exercise (Pre) and 0, 45, 60 min, 24, 48 hr after exercise (Post 0, Post 45 min, Post 60 min, Post 24 hr and Post 48 hr) to determinate the indices of muscle protein metabolism and muscle damage. Results: At Post 24 hr, MVIC was significantly reduced by 21-22% relative to baseline for all experimental groups. At Post 48 hr, the BCAA group’s MVIC was significantly higher than that of the other two groups (p< .05). At Post 45 min, the BCAA group experienced a significant increase in testosterone/cortisol ratio compared to the other two groups. At Post 45 min, the BCAA+CHO group experienced a significant increase in insulin compared to that of the BCAA and PLA groups, but it’s testosterone/cortisol ratio was lower than the PLA group’s value. The BCAA+CHO group’s ΔCK (Post 48 hr-Post 24 hr) value was significantly lower than that of the PLA group (-36% vs -13%), but was similar to that of the BCAA group (-30%). Conclusion: After a 30-min downhill running (-15%) at 70% VO2max, these results indicate that BCAA supplementation could significantly increase testosterone/cortisol ratio at Post 45 min and accelerated recovery of subjects’ MVIC at Post 48 hr. Supplementation of BCAA+CHO had no effects on testosterone/cortisol ratio and MVIC. Co-ingestion of BCAA and CHO could significantly decrease subjects’ ΔCK (Post 48 hr-Post 24 hr) value lower than that of the PLA group.

    中文摘要……………………………………………..i 英文摘要…………………………………………….ii 謝 誌…………………………..…………………...iii 目 次……………………………..………………...iv 表 次……………………………….………………vi 圖 次………..………………………...…..………..vii 第壹章 緒論…...…………………………..…1 第一節 問題背景...…………...……………….…1 第二節 研究目的…...…….….…………….….…3 第三節 研究假設…………...…………………....3 第四節 名詞操作性定義………...………………3 第五節 研究範圍與限制…...…………....……....5 第六節 研究的重要性…...……………..…..…....6 第貳章 文獻探討…...…………………..……7 第一節 關於支鏈胺基酸…...…...…………….…7 第二節 蛋白質合成環境………………..…….…9 第三節 蛋白質合成環境之相關研究...……...…12 第四節 文獻總結…...…………………………...19 第叁章 研究方法與步驟…...…………..……21 第一節 受試者…...……………………….………21 第二節 實驗時間………………..…………..……21 第三節 實驗地點…………………...……….……21 第四節 實驗方法與步驟…...…………..…..….…22 第五節 採血及血液分析…...……………….……27 第六節 資料處理….....……………………………29 第肆章 結果…………...………………………30 第一節 受試者基本資料……...……………...……30 第二節 最大自主等長收縮肌力…..………………30 第三節 胰島素………………………………..……34 第四節 睪固酮與皮質醇………….…...………..…36 第五節 尿素氮與肌酸酐…...………………………39 第六節 肌酸激酶…………...………………....……43 第伍章 討論…………………………….………47 第一節 胰島素……………………………..…..……47 第二節 睪固酮與皮質醇………..…………….……48 第三節 尿素氮與肌酸酐…...………………….……53 第四節 增補對肌力與睪固酮/皮質醇比值的影響...54 第五節 增補對肌酸激酶的影響……………………57 第六節 結論與建議…………………...….…………58 參考文獻………………………………………….60 附錄…….………………………………………….71 附錄一 身體活動問卷調查表………………….……. ………….………….71 附錄二 受試者須知及同意書………………………………………………..72 附錄三 人體試驗暨研究倫理委員會審核通過證明函………………......74 附錄四 不同組別與不同時間點之 MVIC% 變異數分析摘要表…………..75 附錄五 不同組別與不同時間點之 MVIC% 單純主要效果分析摘要表…..75 附錄六 不同組別之 ΔMVIC% 之單因子變異數分析摘要表………......76 附錄七 不同組別與不同時間點之酸痛指數變異數分析摘要表…………..77 附錄八 不同組別與不同時間點之胰島素濃度變異數分析摘要表……......78 附錄九 不同組別與不同時間點之胰島素濃度單純主要效果分析摘要表..78 附錄十 不同組別與不同時間點之睪固酮濃度變異數分析摘要表……..…79 附錄十一 不同組別與不同時間點之睪固酮濃度 單純主要效果分析摘要表…...........................79 附錄十二 不同組別與不同時間點之皮質醇濃度變異數分析摘要表………….80 附錄十三 不同組別與不同時間點之睪固酮/皮質醇 變異數分析摘要表…….............................….81 附錄十四 不同組別與不同時間點之睪固酮/皮質醇 單純主要效果分析摘要表..............................81 附錄十五 不同組別與不同時間點之尿素氮濃度之 變異數分析摘要表….........................………….82 附錄十六 不同組別與不同時間點之肌酸酐濃度 變異數分析摘要表……………….82 附錄十七 不同組別與不同時間點之尿素氮/肌酸酐比值 變異數分析摘要表...........................82 附錄十八 不同組別與不同時間點之 CK 數值 變異數分析摘要表………………...83 附錄十九 不同組別與不同時間點之 CK% 變異數分析摘要表…............................83 附錄二十 不同組別之 ΔCK% (Post 48 hr-Post 24 hr) 單因子變異數分析摘要表..........................83 附錄二十一 支鏈胺基酸等相關增補方式對 蛋白質合成環境與肌肉損傷影響的文獻整理表…….....…84 表 次 表1 依變項測量時間表………………………………………….……….……24 表2 受試者基本資料表….………………………………….………..……30 表3 各組下坡跑前、後最大自主等長肌力表.…….…………..….……….31 表4 各組下坡跑前、後 MVIC% 數值表…………………………….………..32 表5 各組之 ΔMVIC% 數值表……………...…………..………….…………33 表6 各組下坡跑前、後肌肉酸痛指數數值表………………....………..34 表7 各組下坡跑前、後胰島素濃度數值表….……………………………..…35 表8 各組下坡跑前、後睪固酮濃度表………...……………….…………36 表9 各組下坡跑前、後皮質醇濃度數值表…..…………….………….38 表10 各組下坡跑前、後睪固酮/皮質醇比值表……………….……….…39 表11 各組下坡跑前、後尿素氮濃度表………...………………….…………40 表12 各組下坡跑前、後肌酸酐濃度表………………….………….…………41 表13 各組下坡跑前、後尿素氮/肌酸酐比值表………………….……….…42 表14 各組下坡跑前、後 CK 數值表…………………….……….………….44 表15 各組下坡跑前、後 CK% 數值表.…………………………….…….…44 表16 各組之 ΔCK% 數值表.……………………………….……….……...46 圖 次 圖1 支鏈胺基酸化學結構圖..........……………..………..………..7 圖2 營養物質與運動調控 mTOR 機制.......…………….….………....8 圖3 研究流程圖...………………………………………....……………...23 圖4 下坡跑實驗流程圖...………………………………………………..24 圖5 下坡跑設備圖..........…………………………………..………..26 圖6 下坡跑施測圖.......……………….….……………………………….26 圖7 最大自主等長收縮肌力施測圖.…………………....………..…..….26 圖8 運動前、後 MVIC 數值變化圖.………..…………………….………31 圖9 運動前、後 MVIC% 數值變化圖……..…….………....…………….32 圖10 △MVIC% 數值圖……..…………………………….…………………33 圖11 運動前、後肌肉酸痛指數變化圖...…………………………...………34 圖12 運動前、後胰島素濃度變化圖………………..……………………..35 圖13 運動前、後睪固酮濃度變化圖…………………….……………..…….37 圖14 運動前、後皮質醇濃度變化圖……………………….………….………38 圖15 運動前、後睪固酮/皮質醇比值變化圖……………....…………….39 圖16 運動前、後尿素氮濃度變化圖…………………….…………………40 圖17 運動前、後肌酸酐濃度變化圖………………………………..………41 圖18 運動前、後尿素氮/肌酸酐比值變化圖........…………….………42 圖19 運動前、後 CK 濃度變化圖………………………....…………….45 圖20 運動前、後 CK% 濃度變化圖……………………….…………………45 圖21 運動前、後 △CK% (Post 48 hr-Post 24 hr) 數值圖………….46

    吳幸娟、吳佳娟、金惠民、胡淑惠、陳惠欣、章樂綺等 (2001)。營養評估。臺中市:華格那出版社。
    林芷筠 (2009)。支鏈胺基酸與肌酸增補對耐力運動與瞬發力運動之貢獻 (未出版碩士論文)。國立台灣師範大學,臺北市。
    Apro, W., & Bloomstrand, E. (2010). Influrence of supplementation with branched-chain amino acids in combination with resistance exercise on p70S6 kinase phosphorylation in resting and exercising human skeletal muscle. Acta Physiologica, 200, 237-248.
    Baty, J. J., Hwang, H., Ding, Z., Bernard, J. R., Wang, B., Kwon, B., et al. (2007). The effect of a carbohydrate and protein supplement on resistance exercise performance, hormonal response, and muscle damage. Journal of Strength and Conditioning Research, 21(2), 321-329.
    Beelen, M., Koopman, R., Gijsen, A. P., Vandereyt, H., Kies, A. K., Kuipers, H., et al. (2008). Protein coingestion stimulates muscle protein synthesis during resistancetype exercise. The American Journal of Physiology, 295, E70-E77.
    Bell, J. A., Fujita, S., Volpi, E., Cadenas, J. G., & Rasmussen, B. B. (2005). Short-term insulin and nutritional energy provision do not stimulate muscle protein synthesis if blood amino acid availability decreases. American Journal of Physiology Endocrinology and Metabolism, 289(6), E999-1006.
    Betts, J. A., Beelen, M., Stokes, K. A., Saris, W. H. M., & van Loon, L. J. C. (2011). Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis. International Journal of Sport Nutrition and Exercise Metabolism, 21, 398-409.
    Biolo, G., Declan Fleming, R. Y., & Wolfe, R. R. (1995). Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle. The Journal of Clinical Investigation, 95(2), 811-819.
    Biolo, G., Maggi, S. P., Williams, B. D., Tipton, K. D., & Wolfe, R. R. (1995). Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. American Journal of Physiology Endocrinology and Metabolism, 268(3), E514-E520.
    Biolo, G., Williams, B. D., Fleming, R. Y., & Wolfe, R. R. (1999). Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise. Diabetes, 48(5), 949-957.
    Blomstrand, E., Eliasson, J., Karlsson, H. K. R., & Kohnke, R. (2006). Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. The Journal of Nutrition, 136, 269S-273S.
    Bloomer, R. J., Sforzo, G. A., & Keller, B. A. (2000). Effects of meal form and composition on plasma testosterone, cortisol, and insulin following resistance exercise. International Journal of Sport Nutrition, 10, 415-424.
    Bolster, D. R., Jefferson, L. S., & Kimball, S. R. (2004). Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. The Proceedings of the Nutrition Society, 63, 351-356.
    Breen, L., Philp, A., Witard, O. C., Jackman, S. R., Selby, A., Smith, K., et al. (2011). The influence of carbohydrate–protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. Journal of Physiology, 589(16), 4011-4025.
    Cockburn, E., Hayes, P. R., French, D. N., Stevenson, E., & Clair Gibson, A. (2008). Acute milk-based protein-CHO supplementation attenuates exercise-induced muscle damage. Applied Physiology, Nutrition, and Metabolism, 33, 775-783.
    Cockburn, E., Stevenson, E., Hayes, P. R., Ansley, P. R., & Howatson, G. (2010). Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise induced muscle damage. Applied Physiology, Nutrition, and Metabolism, 35, 270-277.
    Combaret, L., Dardevet, D., Rieu, I., Pouch, M. N., Bechet, D., Taillandier, D., et al. (2005). A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. The Journal of Physiology, 569, 489-499.
    Coombes, J. S., & McNaughton, L. R. (2000). Effects of branched-chain amino acid supplementation on serum creatine kinase and lactate dehydrogenase after prolonged exercise. Journal of Sports Medicine and Physical Fitness, 40, 240-246.
    Dreyer, H. C., Drummond, M. J., Pennings, B., Fujita, S., Glynn, E. L., Chinkes, D. L., et al. (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. American Journal of Physiology Endocrinology and Metabolism, 294, E392-E400.
    Dreyer, H. C., Fujita, S., Cadenas, J. G., Chinkes, D. L., Volpi, E., & Rasmussen, B. B. (2006). Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. Journal of Applied Physiology, 576(2), 613-624.
    Etheridge, T., Philp, A., & Watt, P. W. (2008). A single protein meal increases recovery of muscle function following an acute eccentric exercise bout. Applied Physiology, Nutrition, and Metabolism, 33, 483-488.
    Fry, A. C., Kraemer, W. J., & Ramsey, L. T. (1998). Pituitary-adrenalgonadal responses to high-intensity resisitance overtraining. Journal of Applied Physiology, 85, 2352-2359.
    Fujita, S., Dreyer, H. C., Drummond, M. J., Glynn, E. L., Volpi, E., & Rasmussen, B. B. (2009). Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. Journal of Applied Physiology, 106(5), 1730-1739.
    Fujita, S., Rasmussen, B. B., Cadenas, J. G., Grady, J. J., & Volpi, E. (2006). Effect of insulin on human skeletal muscle protein synthesis is modulated by insulin-induced changes in muscle blood flow and amino acid availability. American Journal of Physiology Endocrinology and Metabolism, 291(4), E745-754.
    Garlick, P. J. (2005). The role of leucine in the regulation of protein metabolism. The Journal of Nutrition, 135, 1553S-1556S.
    Gelfand, R., & Barrett, E. (1987). Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. Journal of Clinical Investigation, 80(1), 1-6.
    Gibala, M. J. (2007). Protein metabolism and endurance exercise. Sports Medicine, 37, 337-40.
    Glynn, E. L., Fry, C. S., Drummond, M. J., Dreyer, H. C., Dhanani, S., Volpi, E., et al. (2010). Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. American journal of physiology. Regulatory, integrative and comparative physiology, 299(2), R533-R540.
    Greenhaff, P. L., Karagounis, L. G., Peirce, N., Simpson, E. J., Hazell, M., Layfield, R., et al. (2008). Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. American Journal of Physiology Endocrinology and Metabolism, 295, E595-E604.
    Greer, B. K., White, J. P., Arguello, E. M., & Haymes, E. M. (2011). BCAA supplementaion lowers perceived exertion but does not affect performance in untrained males. Journal of Strength and Conditioning Research, 25(2), 539-544.
    Greer, B. K., Woodard, J. L., White, J. P., Arguello, E. M., & Haymes, E. M. (2007). Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 17, 595-607.
    Haff, G. G., Lehmkuhl, M. J., McCoy, L. B., & Stone, M. H. (2003). Carbohydrate supplementation and resistance training. Journal of Strength and Conditioning Research, 17, 187-196.
    Hakkinen, K., Pakarinen, A., Kraemer, W. J., Newton, R. U., & Alen, M. (2000). Basal concentrations and acute responses of serum hormones and strength development during heavy resistance training in middle-aged and elderly men and wonen. The Journals Gerontology. Series A, Biological Sciences and Medical Sciences, 55, B95-B105.
    Haralambie, G., & Berg, A. (1976). Serum urea and amino nitrogen changes with exercise duration. European Journal of Applied Physiology, 36(1), 39-48.
    Howatson, G., & Someren, K. A. (2008). The prevention and treatment of exercise-induced muscle damage. Sports Medicine, 38(6), 483-503.
    Hsu, M. C., Chien, K. Y., Hsu, C. C., Chung, C. J., Chan, K. H., & Su, B. (2011). Effects of bcaa, arginine and carbohydrate combined drink on post-exercise biochemical response and psychological condition. Chinese Journal of Physiology, 54(2), 71-78.
    Jackman, S. R., Witard, O. C., Jeukendrup, A. E., & Tipton, K. D. (2010). Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Medicine Science and Sports in Exercise, 42(5), 962-970.
    Kadowaki, M., & Kanazawa, T. (2003). Amino acids as regulators of proteolysis. The Journal of Nutrition, 133, 2052S-2056S.
    Kaplan, S. A., Meehan, A. G., & Shah, A. (2006). The age related decrease in testosterone is significantly exacerbated in obese men with the metabolic syndrome. What are the implications for the relatively high incidence of erectile dysfunction observed in these men? The Journal of urology, 176(1), 1524-1527.
    Karlsson, H. K., Nilsson, P. A., Nilsson, J., Chibalin, A. V., Zierath, J. R., & Blomstrand, E. (2004). Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. American Journal of Physiology Endocrinology and Metabolism, 287(1), E1-E7.
    Kimball, S. R., & Jefferson, L. S. (2006). New functions for amino acids: Effects on gene transcription and translation. American Journal of Clinical Nutrition, 83(2), 500S-507S.
    Kimura, N., Tokunaga, C., Dalal, S., Richardson, C., Yoshino, K., Hara, K., et al. (2003). A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells, 8(1), 65-79.
    Kirby, T. J., Triplett, N. T., Haines, T. L., Skinner, J. W., Fairbrother, K. R., & McBride, J. M. (2012). Effect of leucine supplementation on indices of muscle damage following drop jumps and resistance exercise. Amino Acids, 42, 1987-1996.
    Koba, K. H., Sakurai, M., Matsumoto, K., Hayase, H., Imaizumi, K., Tsujimoto, H., et al. (2007). Branched-chain amino acids supplementation attenuates the accumulation of blood lactate dehydrogenase during distance running. Journal of Sports Medicine and Physical Fitness, 47, 316-322.
    Koopman, R., Beelen, M., Stellingwerff, T., Pennings, B., Sarlis, W. H. M., Kies, A. K., et al. (2007). Coingestion of carbohydrate with protein does not further augment postexercise muscle protein synthesis. American Journal of Physiology Endocrinology and Metabolism, 293, E833-E842.
    Koopman, R., Pannemans, D. L. E., Jeukendrup, A. E., Gijsen, A. P., Senden, J. M. G., Halliday, D., et al. (2004). Combined ingestion of protein and carbohydrate improves protein balance during ultra-endurance exercise. The American Journal of Physiology, 287, E712-E720.
    Koopman, R., Saris, W. H. M., Wagenmakers, A. J. M., & Loon, L. J. C. (2007). Nutritional interventions to promote post-exercise muscle protein synthesis. Sports Medicine, 37(10), 895-906.
    Koopman, R., Wagenmakers, A. J., Manders, R. J. F., Zorenc, A. H. G., Senden, J. M. G., Gorselink, M., et al. (2005). The combined ingestion of protein and free leucine with carbohydrate increases post-exercise muscle protein synthesis in vivo in male subjects. The American Journal of Physiology, 288, E645-E653.
    Kraemer, W. J. (1992). Hormonal mechanisms related to the expression of muscular strength and power. In P. V. Komi (Ed.), Strength and Power in Sport. Oxford: Blackwell Scientific.
    Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, 35(4), 339-361.
    Kraemer, W. J., Gordon, S. E., Fleck, S. J., Marchitelli, L. J., Mello, R., Dziados, J. E., et al. (1991). Endogenous anabolic hormonal and growth factor responses to heavy resisitance exercise in males and females. International Journal Sports Medicine, 12, 288-235.
    Kraemer, W. J., Hakkinen, K., Newton, R. U., Nindl, B. C., Volek, J. S., McCormick, M, et al. (1999). Effects of heavy-resistance training on hormonal response patterns in younger vs older men. Journal of Applied Physiology, 87, 982-992.
    Kraemer, W. J., Marchitelli, L., Gordon, S. E., Harman, E., Dziados, J. E., Mello, R., et al. (1990). Hormonal and growth factor responses to heavy resistance exercise protocols. Journal of Applied Physiology, 69, 1442-1450.
    Kraemer, W. J., Spiering, B. A., Volek, J. S., Ratamess, N. A., Sharman, M. J., Rubin, M. R., et al. (2006). Androgenic responses to resistance exercise: effects of feeding and L-carnitine. Medicine and Science in Sports and Exercise, 38(7), 1288-1296.
    Lemon, P. W., Deutsch, D. T., & Payne, W. R. (1989). Urea production during prolonged swimming. Journal of Sports Sciences, 7(3), 241-246.
    MacLean, D. A., Graham, T. E., & Saltin, B. (1994). Branched-chain amino acids augment ammonia metabolism while attenuating protein breakdown. America Journal of Physiology, 267, E1010-E1022.
    Mammi, C., Calanchini, M., Antelmi, A., Cinti, F., Rosano, G. M., Lenzi, A., et al. (2012). Androgens and adipose tissue in males: a complex and reciprocal interplay. International Journal of Endocrinology, 2012, 1-8.
    Margaritis, I., Tessier, F., Verdera, F., Bermon, S., & Marconnet, P. (1999). Muscle enzyme release does not predict muscle function impairment after triathlon. The Journal of Sports Medicine and Physical Fitness, 39, 133-139.
    Maridakis, V., O'Connor, P. J., Dudley, G. A., & McCully, K. K. (2007). Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. The Journal of Pain, 8(3), 237-243.
    Matsumoto, K., Koba, T., Hamada, K., Sakurai, M., Higuchi, T., & Miyata, H. (2009). Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. Journal of Sports Medicine and Physical Fitness, 49, 424-431.
    Matsumoto, K., Mizuno, M., Mizuno, T., Hansen, B. D., Lahoz, A., Bertelsen, V., et al. (2007). Branched-chain amino acids and arginie supplementation attenuates skeletal muscle proteolysis induced by moderate exercise in young individuals. International Journal of Sports Medicine, 28, 531-538.
    Miller, S. L., Tipton, K. D., Chinkes, D. L., Wolf, S. E., & Wolfe, R. R. (2003). Independent and combined effects of amino acids and glucose after resistance exercise. Medicine Science and Sports in Exercise, 35(3), 449-455.
    Miranda, L., Horman, S., De Potter, I., Hue, L., Jensen, J., & Rider, M. (2008). Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle. Pflugers Archive, 455(6), 1129-1140.
    Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., et al. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American Journal of Clinical Nutriton, 89(l), 161-168.
    Nasaka, K., Newton, M., & Sacco, P. (2002). Muscle damage and soreness after exercise of the elbow flexors. Medicine Science and Sports in Exercise, 34, 920-927.
    Nosaka, K., Sacco, P., & Mawatari, K. (2006). Effects of amino acid supplementation on muscle soreness and damage. International Journal of Sport Nutrition and Exercise Metabolism, 16, 620-635.
    Park, K. S., Sedlock, D. A., Navalta, J. W., Lee, M. G., & Kim, S. H. (2011). Leukocyte apoptosis and pro-/anti-apoptotic proteins following downhill running. European Journal of Applied Physiology, 111, 2349-2357.
    Rasmussen, B. B., Tipton, K. D., Miller, S. M., Wolf, S. E., & Wolfe, R. R. (2000). An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 88, 386-392.
    Rowlands, A. V., Eston, R. G., & Tilzey, C. (2001). Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. Journal of Sports Sciences, 19, 333-340.
    Sharp, C. P. M., & Pearson, D. R. (2010). Amino acid supplements and recovery from high-intensity resistance training. Journal of Strength and Conditioning Research, 24(4), 1125-1130.
    Shimomura Y., Murakami T., Nakai N., Nagasaki M., & Harris R. A., (2004). Exercise promotes BCAA catabolism: effect of BCAA supplementation on skeletal muscle during exercise. Journal of Nutrition, 134, 1583S-1587S.
    Shimomura, Y., Inaguma, A., Watanabe, S., Yamamoto, Y., Muramatsu, Y., Bajotto, G., et al. (2010). Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. International Journal of Sport Nutrition and Exercise Metabolism, 20, 236-244.
    Shimomura, Y., Yamamoto, Y., Bajotto, G., Sato, J., Murakami, T., Shimomura, N., et al. (2006). Nutraceutical effects of branched-chain amino acids on skeletal muscle. The Journal of Nutrition, 136, 529S-532S.
    Sousa, M. V., Madsen, K., Simoes, H. G., Pereira, R. M. R., Negrao, C. E., Mendonca, R. Z., et al. (2010). Effects of carbohydrate supplementation on competitive runners undergoing overload training followed by a session of intermittent exercise. European Journal of Applied Physiology, 109, 507-516.
    Staples, A. W., Burd, N. A., West, D. W. D., Currie, K. D., Atherton, P. J., Moore, D. R., et al. (2011). Carbohydrate does not augment exercise-induced protein accretion versus protein alone. Medicine Science and Sports in Exercise, 43(7), 1154-1161.
    Stephen, P. B., Tarpenning, K. M., & Marino, F. E. (2006). Effects of liquid carbohydrate/essential amino acid ingestion on acute hormonal response during a single bout of resistance exercise in untrained men. Nutrition, 22, 367-375.
    Stock, M. S., Young, J. C., Golding, L. A., Kruskall, L. J., Tandy, R. D., Conway-Klaassen, J. M., et al. (2010). The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training. Journal of Strength and Conditioning Research, 24(8), 2211-2219.
    Tang, F. C. (2006). Influence of branched-chain amino acid supplementation on urinary protein metabolite concentrations after swimming. Journal of the American Colloge of Nutrition, 25(3), 188-194.
    Tarpenning, K. M., Wiswell, R. A., & Hawkins, S. A. (2003). CHO-induced blunting of cortisol response to weightlifting exercise in resistance-trained older men. European Journal of Sport Science, 3, 1-10.
    Tipton, K. D., & Wolfe, R. R. (2004). Protein and amino acids for athletes. Journal of Sports Sciences, 22, 65-79.
    Tipton, K. D., Elliott, T. A., Gree, M. C., Aarsland, A. A., Sanford, A. P., & Wolfe, R. R. (2007). Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. American Journal of Physiology Endocrinology and Metabolism, 292, E71-E76.
    Tremblay, M. S., Copeland, J. L., & Walter, V. H. (2004). Effect of training status and exercise mode on endogenous steroid hormones in men. Journal of Applied Physiology, 96, 531-539.
    Urhausen, A., & Kindermann, W. (2002). Diagnosis of overtraining: What tools do we have? Sports Medicine, 32(2), 95-102.
    Urhausen, A., Gabriel, H., & Kindermann, W. (1995). Blood hormones as markers of training stress and overtraining. Sports Medicine, 20, 251-276.
    Volek, J. S., Kraemer, W. J., Bush, J. A., Incledon, T. & Bostes, M., (1997). Testosterone and cortisol in relationship to dietary nutrients and resistance exercise. Journal of Applied Physiology, 82, 49-54.
    Wagenmakers, A. J. M., Brookes, J. H., Coakley, T. R., & Edwards, R. H. T. (1989). Exercise-induced activation of the branched-chain 2-oxo acid dehydrogenase in human muscle. European Journal of Applied Physiology, 59, 159-167.
    Wang, X., & Proud, C. G. (2006). The mTOR pathway in the control of protein synthesis. Physiology, 21(5), 362-369.
    Warren, G. L., Lowe, D. A., & Armstrong, R. B. (1999). Measurement tools used in the study of eccentric contraction-induced injury. Sports Medicine, 27 (1), 43-59.
    White, J. P., Wilson, J. M., Austin, K. G., Greer, B. K., St John, N., & Panton, L. B. (2008). Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. Journal of the International Society of Sports Nutrition, 5, 5-8.
    Widmaier, E. P., Raff, H., & Strang, K. T. (2006). Human physiology: the mechanisms of body function (10th ed.). New York: McGraw-Hill.
    Williams, M. H. (2007). Body Weight and Composition for Health and Sport. (8th ed.). New York: McGraw-Hill.
    Wullschleger, S., Loewith, R., & Hall, M. N. (2006). mTOR signaling in growth and metabolism. Cell, 124, 471-484.
    Yoshizawa, F. (2004). Regulation of protein synthesis by branched-chain amino acids in vivo. Biochemical and Biophysical Research Communications, 313(2), 417-22.

    下載圖示
    QR CODE