研究生: |
潘彥維 Pan, Yen-Wei |
---|---|
論文名稱: |
以 HFLUX 模式模擬亞熱帶山區間歇性河段熱收支情形 Modeling stream heat budget with HFLUX in a subtropical alpine intermittent river |
指導教授: |
李宗祐
Lee, Tsung-Yu |
口試委員: |
邱永嘉
Chiu, Yung-Chia 許少瑜 Hsu, Shao-Yiu 李宗祐 Lee, Tsung-Yu |
口試日期: | 2022/01/18 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 分散式溫度感測器 、地表水與地下水交互作用 、河川水溫 、伏流水 、有勝溪 、櫻花鉤吻鮭 |
英文關鍵詞: | FO-DTS, surface water-groundwater interaction, hyporheic zone, stream thermal regime, hyporheic flow, Yousheng creek, formosan salmon |
研究方法: | 次級資料分析 、 調查研究 、 數值建模 |
DOI URL: | http://doi.org/10.6345/NTNU202200334 |
論文種類: | 學術論文 |
相關次數: | 點閱:118 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
河道中河川水、伏流水與地下水的交互作用對河流的生物地球化學循環及間歇性流動特徵有著關鍵的影響卻鮮少被量化,而溫度作為一種良好的天然示蹤劑,可用以量化各水文通量於時空上所造成的熱收支變化。七家灣溪上游的有勝溪是櫻花鉤吻鮭域外放流的重要棲地之一,近年卻經常發生斷流現象,導致鮭魚棲地擴張受限而影響復育成效。本研究以緊鄰羅葉尾溪下游、長約1924公尺的有勝溪間歇性河段為研究對象,結合分散式溫度感測器 (fiber-optic distributed temperature sensor, FO-DTS)、河流熱收支模型 (HFLUX)、空拍機影像、氣象資料及現地調查數據,識別並量化河段中地表水與地下水 (含伏流水)之間的交互作用。分析2019年06月23日至06月25日的溫度測量結果顯示有11個活躍的伏流水區域及3個地下水流入的位置;HFLUX模式並成功模擬觀測水溫,其正規化均方根誤差 (nRMSE) 僅3.12 %,模擬結果顯示中游河段有較高的入滲潛勢,而下游則是地下水主要進入的河段。綜合分析結果認為地表水與地下水的交互作用是影響間歇性流動河段其河川水溫變化的主因,並影響其斷流潛勢。本研究結果增進了對於源頭溪流的水文過程及能量收支的知識。
Surface water and groundwater interactions between the stream and the hyporheic zone profoundly affect river intermittency and biogeochemical processes, yet they are rarely quantified. As an excellent natural tracer, temperature was used to quantify unknown patterns of hydrologic fluxes and to understand their impact on heat budget over time and space. The Yousheng Creek (a first-order upstream of Chichiawan Creek in Taiwan) is one of the crucial habitats for the endangered species of Formosan land-locked salmon. In recent years, stream fragmentation seriously limited the expansion of the salmon habitat, hampering the rehabilitation work. This study takes heat as a tracer to examine exchange processes in the intermittent reach of Yousheng Creek, with the application of fiber-optic distributed temperature sensor (FO-DTS). The combined use of FO-DTS, deterministic stream heat budget model (the HFLUX computer program), drone imagery, meteorological measurements, and field surveys allowed for identifying, quantifying, and mapping groundwater inputs beneath the 1924 meters reach. Analysis of the temperature traces measured from June 23rd to June 25th, 2019, have identified 11 active hyporheic zones and three groundwater inflows, providing significant cooling in the study section. HFLUX successfully modeled the river temperature through time and space with a normalized root mean square error of 3.12%. Inference from the model indicates a series of high infiltration zones at midstream whereas primary groundwater input from the downstream. The results suggest that different groundwater contributions along the Yousheng Creek significantly impact river temperatures and may lead to streamflow disconnection. These insights of groundwater-surface water interactions can be applied to improve the knowledge of hydrology processes and energy budgets in headwaters.
水利署(2020)。中華民國一百零八年臺灣水文年報。
交通部中央氣象局(2020)。中華民國108年氣候資料年報 第一部分─地面資料。
吳淑涵(2012)。應用極端流量及水溫評估氣候變遷對櫻花鈎吻鮭棲地之衝擊。國立臺灣大學生物環境系統工程學研究所碩士論文,台北市。
李宗祐(2003)。氣候變遷對櫻花鈎吻鮭棲地水溫及族群數量之影響。國立臺灣大學生物環境系統工程學系暨研究所碩士論文,台北市。
李宗祐、黃誌川、邱永嘉(2017)。106年度評估水文條件改變及河床-河水交互作用對七家灣溪河川流量與溪流棲地之影響。內政部營建署雪霸國家公園管理處。
張瑀宬(2021)。以鹽水示蹤劑試驗與數值模式探討高山一級河川之地表水及地下水交互作用–以七家灣溪為例。國立臺灣海洋大學地球科學研究所碩士論文,基隆市。
許貿傑(2019)。結合季長期天氣預報與標準化降雨指標建立有勝溪斷流預警系統。國立臺灣師範大學地理學系碩士論文,台北市。
彭柏文(2011)。櫻花鈎吻鮭棲地氣候變遷衝擊評估與季節性預警系統建立。國立臺灣大學生物環境系統工程學研究所碩士論文,台北市。
童慶斌(2011)。櫻花鉤吻鮭棲地水溫容忍氣候變化閥值與調適能力建構決策模式之研究。行政院國家科學委員會。
楊正雄(1997)。水溫對櫻花鉤吻鮭族群的影響。國立清華大學生命科學系碩士論文,新竹市。
潘信宏(2001)。環境變遷對櫻花鉤吻鮭棲地水溫之影響。國立臺灣大學農業工程學研究所碩士論文,台北市。
Acornley, R. M., & Sear, D. A. (1999). Sediment transport and siltation of brown trout (Salmo trutta L.) spawning gravels in chalk streams. Hydrological processes, 13(3), 447-458.
Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., ... & Palmer, M. A. (2014). Why should we care about temporary waterways?. Science, 343(6175), 1080-1081.
Allen, D. J., Darling, W. G., Gooddy, D. C., Lapworth, D. J., Newell, A. J., Williams, A. T., ... & Abesser, C. (2010). Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology journal, 18(5), 1125-1141.
Allen, R. G. (1997). Self-calibrating method for estimating solar radiation from air temperature. Journal of Hydrologic engineering, 2(2), 56-67.
Anderson, J. K., Wondzell, S. M., Gooseff, M. N., & Haggerty, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the HJ Andrews Experimental Forest, Oregon, USA. Hydrological Processes: An International Journal, 19(15), 2931-2949.
Anderson, M. P. (2005). Heat as a ground water tracer. Groundwater, 43(6), 951-968.
Angermann, L., Krause, S., & Lewandowski, J. (2012). Application of heat pulse injections for investigating shallow hyporheic flow in a lowland river. Water Resources Research, 48(12).
Anibas, C., Fleckenstein, J. H., Volze, N., Buis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2009). Transient or steady-state? Using vertical temperature profiles to quantify groundwater-surface water exchange. Hydrological Processes, 23(15), 2165–2177. http://doi.org/10.1002/hyp.7289
Antonopoulos, V. Z., & Gianniou, S. K. (2003). Simulation of water temperature and dissolved oxygen distribution in Lake Vegoritis, Greece. Ecological Modelling, 160(1-2), 39-53.
Arora, R. (2016). River temperature behaviour in changing environments: trends, patterns at different spatial and temporal scales and role as a stressor. Freie Universität Berlin.
Aubeneau, A. F., Drummond, J. D., Schumer, R., Bolster, D., Tank, J. L., & Packman, A. I. (2015). Effects of benthic and hyporheic reactive transport on breakthrough curves. Freshwater Science, 34(1), 301-315.
Baker, E. A., Lautz, L. K., McKenzie, J. M., & Aubry-Wake, C. (2019). Improving the accuracy of time-lapse thermal infrared imaging for hydrologic applications. Journal of hydrology, 571, 60-70.
Becker, M. W., Georgian, T., Ambrose, H., Siniscalchi, J., & Fredrick, K. (2004). Estimating flow and flux of ground water discharge using water temperature and velocity. Journal of Hydrology, 296(1-4), 221-233.
Benson, S. W., Copeland, C. S., & Pearson, D. (1953). Molal volumes and compressibilities of the system NaCl–H2O above the critical temperature of water. The Journal of Chemical Physics, 21(12), 2208-2212.
Benyahya, L., Caissie, D., El-Jabi, N., & Satish, M. G. (2010). Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada). Journal of Hydrology, 380, 247–259. https://doi.org/10.1016/j. jhydrol.2009.10.039
Benyahya, L., Caissie, D., Satish, M. G., & El‐Jabi, N. (2012). Long‐wave radiation and heat flux estimates within a small tributary in Catamaran Brook (New Brunswick, Canada). Hydrological Processes, 26(4), 475-484.
Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B., & Bobée, B. (2007). A review of statistical water temperature models. Canadian Water Resources Journal, 32(3), 179-192.
Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603-679. doi: 10.1002/2012rg000417
Boano, F., Revelli, R., & Ridolfi, L. (2008). Reduction of the hyporheic zone volume due to the stream‐aquifer interaction. Geophysical Research Letters, 35(9).
Booth, D. B., Kraseski, K. A., & Rhett Jackson, C. (2014). Local‐scale and watershed‐scale determinants of summertime urban stream temperatures. Hydrological Processes, 28(4), 2427-2438.
Breau, C., Cunjak, R. A., & Bremset, G. (2007). Age‐specific aggregation of wild juvenile Atlantic salmon Salmo salar at cool water sources during high temperature events. Journal of Fish Biology, 71(4), 1179-1191.
Briggs, M. A., Goodling, P., Johnson, Z. C., Rogers, K. M., Hitt, N. P., Fair, J. B., & Snyder, C. D. (2022). Bedrock depth influences spatial patterns of summer baseflow, temperature, and flow disconnection for mountainous headwater streams. Hydrology and Earth System Sciences Discussions, 1-48.
Briggs, M. A., Johnson, Z. C., Snyder, C. D., Hitt, N. P., Kurylyk, B. L., Lautz, L., Lane, J. W. (2018). Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals. Sci Total Environ, 636, 1117-1127. doi: 10.1016/j.scitotenv.2018.04.344
Broecker, K. T. C. (2021). High-resolution integral modelling approach for flow and transport in groundwater-surface water interaction space. (Doctoral Thesis), Technische Universität Berlin, Berlin.
Broecker, T., Elsesser, W., Teuber, K., Özgen, I., Nützmann, G., & Hinkelmann, R. (2018). High-resolution simulation of free-surface flow and tracer retention over streambeds with ripples. Limnologica, 68, 46-58.
Brown, G. W. (1969). Predicting temperatures of small streams. Water Resources Research, 5(1), 68-75.
Brown, G. W., & Krygier, J. T. (1970). Effects of clear‐cutting on stream temperature. Water resources research, 6(4), 1133-1139.
Brown, L. E., & Hannah, D. M. (2007). Alpine stream temperature response to storm events. Journal of Hydrometeorology, 8(4), 952-967.
Brown, L. E., & Hannah, D. M. (2008). Spatial heterogeneity of water temperature across an alpine river basin. Hydrological Processes: An International Journal, 22(7), 954-967.
Burkholder, B. K., Grant, G. E., Haggerty, R., Khangaonkar, T., & Wampler, P. J. (2008). Influence of hyporheic flow and geomorphology on temperature of a large, gravel‐bed river, Clackamas River, Oregon, USA. Hydrological Processes: An International Journal, 22(7), 941-953.
Busch, M. H., Costigan, K. H., Fritz, K. M., Datry, T., Krabbenhoft, C. A., Hammond, J. C., ... & Allen, D. C. (2020). What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water, 12(7), 1980.
Caissie, D. (2004). Stream temperature modeling in forest catchments. Doctoral dissertation, PhD Thesis, Dalhousie University, Halifax NS, 207p.
Caissie, D. (2006). The thermal regime of rivers: A review. Freshwater Biology, 51(8), 1389-1406. doi: 10.1111/j.1365-2427.2006.01597.x
Caissie, D., Pollock, T. L., & Cunjak, R. A. (1996). Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of hydrology, 178(1-4), 137-157.
Caissie, D., Satish, M. G., & El-Jabi, N. (2007). Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). Journal of Hydrology, 336(3-4), 303-315.
Caldwell, S. H. (2018). Stormwater Inputs in Urban Streams: Impact and Persistence of Effects on Stream Temperature.
Caldwell, S. H., Kelleher, C., Baker, E. A., & Lautz, L. K. (2019). Relative information from thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-distributed assessments of stream temperature. Science of the Total Environment, 661, 364-374.
Cardenas, M. B., & Wilson, J. L. (2007). Exchange across a sediment–water interface with ambient groundwater discharge. Journal of hydrology, 346(3-4), 69-80.
Chadwick, M. A., & Feminella, J. W. (2001). Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnology and Oceanography, 46(3), 532-542.
Chiu, Y. C., Lee, T. Y., Hsu, S. Y., & Liao, L. Y. (2020). The effect of hydrological conditions and bioactivities on the spatial and temporal variations of streambed hydraulic characteristics at the subtropical alpine catchment. Journal of Hydrology, 584, 124665.
Constantz, J. (1998). Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resources Research, 34(7), 1609-1615. doi: 10.1029/98wr00998
Constantz, J., Niswonger, R. G., & Stewart, A. E. (2008). Analysis of temperature gradients to determine stream exchanges with ground water. Field techniques for estimating water fluxes between surface water and ground water, 4-D2.
Cook, P. G. (2015). Quantifying river gain and loss at regional scales. Journal of Hydrology, 531, 749-758.
Davies-Colley, R. J., Payne, G. W., & Van Elswijk, M. (2000). Microclimate gradients across a forest edge. New Zealand Journal of Ecology, 111-121.
Diabat, M., Haggerty, R., & Wondzell, S. M. (2013). Diurnal timing of warmer air under climate change affects magnitude, timing and duration of stream temperature change. Hydrological Processes, 27(16), 2367-2378.
Dingman, S. L. (1994). Physical Hydrology. Macmillan Publishing Company, New York.
Dingman, S.L., (2002). Physical Hydrology Waveland Press. Long Grove, Illinois.
Dorvlo, A. S., Jervase, J. A., & Al-Lawati, A. (2002). Solar radiation estimation using artificial neural networks. Applied Energy, 71(4), 307-319.
Duff, J. H., Hendricks, S. P., Jackman, A. P., & Triska, F. J. (2002). The effect of Elodea canadensis beds on porewater chemistry, microbial respiration, and nutrient retention in the Shingobee River, Minnesota, North America. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 28(1), 214-222.
Dugdale, S. J. (2016). A practitioner's guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations. Wiley Interdisciplinary Reviews: Water, 3(2), 251-268.
Dzara, J. R., Neilson, B. T., & Null, S. E. (2019). Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging. Hydrology and Earth System Sciences, 23(7), 2965.
Evans, E. C., McGregor, G. R., & Petts, G. E. (1998). River energy budgets with special reference to river bed processes. Hydrological processes, 12(4), 575-595.
Fleckenstein, J. H., Niswonger, R. G. & Fogg, G. E. (2006). River-Aquifer Interactions, Geologic Heterogeneity, and Low-Flow Management. Groundwater, 44(6), 837-852, doi:10.1111/j.1745-6584.2006.00190.x.
Flint, L. E., & Flint, A. L. (2008). A basin‐scale approach to estimating stream temperatures of tributaries to the Lower Klamath River, California. Journal of environmental quality, 37(1), 57-68.
Fritz, K. M., Nadeau, T. L., Kelso, J. E., Beck, W. S., Mazor, R. D., Harrington, R. A., & Topping, B. J. (2020). Classifying streamflow duration: the scientific basis and an operational framework for method development. Water, 12(9), 2545.
Gaffield, S. J., Potter, K. W., & Wang, L. (2005). Predicting the summer temperature of small streams in southwestern Wisconsin. Journal of the American Water Resources Association.
Gallice, A., Bavay, M., Brauchli, T., Comola, F., Lehning, M., & Huwald, H. (2016). StreamFlow 1.0: an extension to the spatially distributed snow model Alpine3D for hydrological modelling and deterministic stream temperature prediction. Geoscientific Model Development, 9(12), 4491-4519. doi: 10.5194/gmd-9-4491-2016
Garner, G., Malcolm, I. A., Sadler, J. P., Millar, C. P., & Hannah, D. M. (2015). Inter-annual variability in the effects of riparian woodland on micro-climate, energy exchanges and water temperature of an upland Scottish stream. Hydrological Processes, 29(6), 1080-1095. doi: 10.1002/hyp.10223
Gerecht, K. E., Cardenas, M. B., Guswa, A. J., Sawyer, A. H., Nowinski, J. D., & Swanson, T. E. (2011). Dynamics of hyporheic flow and heat transport across a bed‐to‐bank continuum in a large regulated river. Water Resources Research, 47(3).
Gibson, A. H. (1966). Physical Environment and Symbiotic Nitrogen Fixation III. Root Temperature Effects on Shoot and Root Development and Nitrogen Distribution In Trifolium Subterraneum. Australian Journal of Biological Sciences, 19(2), 219-232.
Glose, A. (2013). Stream Heat Budget Modeling with the HFLUX Stream Temperature Solver: Model Development, Verification, and Applications . Syracuse University.
Glose, A., Lautz, L. K., & Baker, E. A. (2017). Stream heat budget modeling with HFLUX: Model development, evaluation, and applications across contrasting sites and seasons. Environmental Modelling & Software, 92, 213-228. doi: 10.1016/j.envsoft.2017.02.021
Gómez-Gener, L., Siebers, A. R., Arce, M. I., Arnon, S., Bernal, S., Bolpagni, R., ... & Zoppini, A. (2021). Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth-Science Reviews, 220, 103724.
Gomez-Velez, J. D., Harvey, J. W., Cardenas, M. B., & Kiel, B. (2015). Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience, 8(12), 941-945.
Gomez‐Velez, J. D., Wilson, J. L., Cardenas, M. B., & Harvey, J. W. (2017). Flow and residence times of dynamic river bank storage and sinuosity‐driven hyporheic exchange. Water Resources Research, 53(10), 8572-8595.
Gooseff, M. N. (2010). Defining hyporheic zones–advancing our conceptual and operational definitions of where stream water and groundwater meet. Geography Compass, 4(8), 945-955.
Gray, J. R. A., & Edington, J. M. (1969). Effect of woodland clearance on stream temperature. Journal of the Fisheries Board of Canada, 26(2), 399-403.
Gu, R. R., & Li, Y. (2002). River temperature sensitivity to hydraulic and meteorological parameters. Journal of Environmental Management, 66(1), 43-56.
Haidekker, A., & Hering, D. (2008). Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology, 42(3), 463-481.
Hamblin, P. F., & McAdam, S. O. (2003). Impoundment effects on the thermal regimes of Kootenay Lake, the Arrow Lakes reservoir and upper Columbia River. Hydrobiologia, 504(1), 3-19.
Hannah, D. M., & Garner, G. (2015). River water temperature in the United Kingdom: changes over the 20th century and possible changes over the 21st century. Progress in Physical Geography, 39(1), 68-92.
Hannah, D. M., Malcolm, I. A., Soulsby, C., & Youngson, A. F. (2004). Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub‐seasonal dynamics. River Research and Applications, 20(6), 635-652.
Hannah, D. M., Webb, B. W., & Nobilis, F. (2008). River and stream temperature: dynamics, processes, models and implications. Hydrological Processes: An International Journal, 22(7), 899-901.
Hare, D. K., Briggs, M. A., Rosenberry, D. O., Boutt, D. F., & Lane, J. W. (2015). A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. Journal of Hydrology, 530, 153-166.
Harrington, J. S. (2017). The hydrogeology of a rock glacier and its effect on stream temperature (Master's thesis, Graduate Studies).
Harvey, J. W. & Gooseff, M. (2015). River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resources Research, 51(9), 6893-6922, doi:10.1002/2015wr017617.
Harvey, M. C., Hare, D. K., Hackman, A., Davenport, G., Haynes, A. B., Helton, A., ... & Briggs, M. A. (2019). Evaluation of stream and wetland restoration using UAS-based thermal infrared mapping. Water, 11(8), 1568.
Hatch, C. E., Fisher, A. T., Revenaugh, J. S., Constantz, J., & Ruehl, C. (2006). Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resources Research, 42(10).
Hatch, C. E., Fisher, A. T., Ruehl, C. R., & Stemler, G. (2010). Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. Journal of Hydrology, 389(3-4), 276-288.
Hebert, C., Caissie, D., Satish, M. G., & El‐Jabi, N. (2011). Study of stream temperature dynamics and corresponding heat fluxes within Miramichi River catchments (New Brunswick, Canada). Hydrological Processes, 25(15), 2439-2455.
Hester, E. T., & Bauman, K. S. (2013). Stream and retention pond thermal response to heated summer runoff from urban impervious surfaces 1. JAWRA Journal of the American Water Resources Association, 49(2), 328-342.
Hester, E. T., Doyle, M. W., & Poole, G. C. (2009). The influence of in‐stream structures on summer water temperatures via induced hyporheic exchange. Limnology and Oceanography, 54(1), 355-367.
Hondzo, M., & Stefan, H. G. (1994). Riverbed heat conduction prediction. Water Resources Research, 30(5), 1503-1513.
Hostetler, S. W. (1991). Analysis and Modeling of Long-Term Stream Temperatures on the Steamboat Creek Basin, Oregon: Implications for Land Use and Fish Habitat. Journal of the American Water Resources Association, 27(4), 637-647.
Imholt, C., Soulsby, C., Malcolm, I. A., Hrachowitz, M., Gibbins, C. N., Langan, S., & Tetzlaff, D. (2013). Influence of scale on thermal characteristics in a large montane river basin. River Research and Applications, 29(4), 403-419.
Irvine, D. J., Cranswick, R. H., Simmons, C. T., Shanafield, M. A., & Lautz, L. K. (2015). The effect of streambed heterogeneity on groundwater‐surface water exchange fluxes inferred from temperature time series. Water Resources Research, 51(1), 198-212.
Isaak, D. J., Wollrab, S., Horan, D., & Chandler, G. (2012). Climate change effects on stream and river temperatures across the northwest US from 1980–2009 and implications for salmonid fishes. Climatic change, 113(2), 499-524.
Ivkovic, K. M. (2009). A top–down approach to characterise aquifer–river interaction processes. Journal of Hydrology, 365(3-4), 145-155.
Jasechko, S., Seybold, H., Perrone, D., Fan, Y., & Kirchner, J. W. (2021). Widespread potential loss of streamflow into underlying aquifers across the USA. Nature, 591(7850), 391-395.
Jastram, J. D., & Rice, K. C. (2015). Air-and Stream-water-temperature Trends in the Chesapeake Bay Region, 1960-2014. US Department of the Interior, US Geological Survey.
Jobson, H. E. (1977). Bed conduction computation for thermal models. Journal of the Hydraulics Division, 103(10), 1213-1217.
Johnson, S. L. (2004). Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Canadian Journal of Fisheries and Aquatic Sciences, 61(6), 913-923.
Johnson, S. L., & Jones, J. A. (2000). Stream temperature responses to forest harvest and debris flows in western Cascades, Oregon. Canadian Journal of Fisheries and Aquatic Sciences, 57(S2), 30-39.
Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater–surface water interactions: a review. Hydrology and Earth System Sciences, 10(6), 873-887.
Kasahara, T., & Wondzell, S. M. (2003). Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resources Research, 39(1), SBH-3.
Keery, J., Binley, A., Crook, N., & Smith, J. W. (2007). Temporal and spatial variability of groundwater–surface water fluxes: Development and application of an analytical method using temperature time series. Journal of Hydrology, 336(1-2), 1-16.
Kennedy, C. D., Genereux, D. P., Corbett, D. R. & Mitasova, H. (2009). Spatial and temporal dynamics of coupled groundwater and nitrogen fluxes through a streambed in an agricultural watershed. Water Resources Research, 45(9), doi:10.1029/2008wr007397.
Kim, K. S., & Chapra, S. C. (1997). Temperature model for highly transient shallow streams. Journal of Hydraulic Engineering, 123(1), 30-40.
Krause, S., Blume, T., & Cassidy, N. J. (2012). Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients. Hydrology and Earth System Sciences, 16(6), 1775-1792. doi: 10.5194/hess-16-1775-2012
Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A. L. & Wood, P. J. (2011). Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4(4), 481-499, doi:10.1002/eco.176.
Krause, S., Lewandowski, J., Grimm, N. B., Hannah, D. M., Pinay, G., McDonald, K., . . . Turk, V. (2017). Ecohydrological interfaces as hot spots of ecosystem processes. Water Resources Research, 53(8), 6359-6376. doi: 10.1002/2016wr019516
Larnier, K., Roux, H., Dartus, D., & Croze, O. (2010). Water temperature modeling in the Garonne River (France). Knowledge and Management of Aquatic Ecosystems, (398), 04.
Lautz, L. K. (2012). Observing temporal patterns of vertical flux through streambed sediments using time-series analysis of temperature records. Journal of hydrology, 464, 199-215.
Lawler, D., Cardenas, B., Old, G. H., & Sear, D. A. (2009). Geomorphology and sediments of the hyporheic zone. In The Hyporheic Handbook. A handbook on the groundwater-surface water interface and hyporheic zone for environment managers. Integrated catchment science programme.
Leach, J. A., & Moore, D. (2017). Insights on stream temperature processes through development of a coupled hydrologic and stream temperature model for forested coastal headwater catchments. Hydrological Processes, 31(18), 3160-3177.
Leach, J. A., & Moore, R. D. (2011). Stream temperature dynamics in two hydrogeomorphically distinct reaches. Hydrological Processes, 25(5), 679-690.
Leach, J. A., & Moore, R. D. (2019). Empirical Stream Thermal Sensitivities May Underestimate Stream Temperature Response to Climate Warming. Water Resources Research. doi: 10.1029/2018wr024236
Leach, J. A., Olson, D. H., Anderson, P. D., & Eskelson, B. N. I. (2017). Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA. Aquatic Sciences, 79(2), 291-307. doi: 10.1007/s00027-016-0497-9
Lewandowski, J., Meinikmann, K. & Krause, S. (2020). Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12(1), 296.
Loheide, S. P., & Gorelick, S. M. (2006). Quantifying stream− aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environmental science & technology, 40(10), 3336-3341.
Macan, T. T. (1958). The temperature of a small stony stream. Hydrobiologia, 12(2), 89-106.
MacDonald, R. J., Boon, S., & Byrne, J. M. (2014). A process-based stream temperature modelling approach for mountain regions. Journal of Hydrology, 511, 920-931. doi: 10.1016/j.jhydrol.2014.02.009
Magnusson, J., Jonas, T., & Kirchner, J. W. (2012). Temperature dynamics of a proglacial stream: Identifying dominant energy balance components and inferring spatially integrated hydraulic geometry. Water Resources Research, 48(6).
Malard, F., Tockner, K., DOLE‐OLIVIER, M. J., & Ward, J. V. (2002). A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology, 47(4), 621-640.
Malzone, J. M., Anseeuw, S. K., Lowry, C. S., & Allen‐King, R. (2016). Temporal hyporheic zone response to water table fluctuations. Groundwater, 54(2), 274-285.
Marsh, N., Rutherford, J. C., & Bunn, S. E. (2005). The role of riparian vegetation in controlling stream temperature in a southeast Queensland stream. CRC for Catchment Hydrology, Monash University.
Marzadri, A., Tonina, D., & Bellin, A. (2012). Morphodynamic controls on redox conditions and on nitrogen dynamics within the hyporheic zone: Application to gravel bed rivers with alternate‐bar morphology. Journal of Geophysical Research: Biogeosciences, 117(G3).
Marzadri, A., Tonina, D., & Bellin, A. (2013). Effects of stream morphodynamics on hyporheic zone thermal regime. Water Resources Research, 49(4), 2287-2302.
Matheswaran, K., Blemmer, M., Thorn, P., Rosbjerg, D., & Boegh, E. (2015). Investigation of Stream Temperature Response to Non-Uniform Groundwater Discharge in a Danish Lowland Stream. River Research and Applications, 31(8), 975-992. doi: 10.1002/rra.2792
McCallum, J. L., Cook, P. G., Berhane, D., Rumpf, C., & McMahon, G. A. (2012). Quantifying groundwater flows to streams using differential flow gaugings and water chemistry. Journal of Hydrology, 416, 118-132.
Meinikmann, K., Lewandowski, J., & Nützmann, G. (2013). Lacustrine groundwater discharge: Combined determination of volumes and spatial patterns. Journal of Hydrology, 502, 202-211.
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., ... & Datry, T. (2021). Global prevalence of non-perennial rivers and streams. Nature, 594(7863), 391-397.
Miara, A., Vörösmarty, C. J., Macknick, J. E., Tidwell, V. C., Fekete, B., Corsi, F., & Newmark, R. (2018). Thermal pollution impacts on rivers and power supply in the Mississippi River watershed. Environmental Research Letters, 13(3), 034033.
Moore, R. D., & Leach, J. A. (2021). Predicting Latent and Sensible Heat Fluxes in Stream Temperature Models: Current Challenges and Potential Solutions. Water Resources Research, 57(2). doi: 10.1029/2020wr028712
Moore, R. D., Spittlehouse, D. L., & Story, A. (2005). Riparian microclimate and stream temperature response to forest harvesting: a review1. JAWRA Journal of the American Water Resources Association, 41(4), 813-834.
Moridnejad, M., Cameron, S., Shamseldin, A. Y., Verhagen, F., Moore, C., Melville, B. W., & Ward, N. D. (2019). Temperature modelling and Fibre optic temperature sensing to characterise groundwater discharge. Ground Water. doi: 10.1111/gwat.12938
Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering, 131(1), 139-146.
Neilson, B. T., Hatch, C. E., Ban, H., & Tyler, S. W. (2010). Solar radiative heating of fiber‐optic cables used to monitor temperatures in water. Water Resources Research, 46(8).
Nelson, K. C., & Palmer, M. A. (2007). Stream temperature surges under urbanization and climate change: data, models, and responses 1. JAWRA journal of the American water resources association, 43(2), 440-452.
Orghidan, T. (1959). Ein neuer Lebensraum des unterirdischen Wassers: der hyporheische Biotop. Archiv für Hydrobilogie, 55, 392–414.
Ouellet, V., Secretan, Y., St‐Hilaire, A., & Morin, J. (2014). Daily averaged 2D water temperature model for the St. Lawrence River. River Research and Applications, 30(6), 733-744.
Ouellet, V., St-Hilaire, A., Dugdale, S. J., Hannah, D. M., Krause, S., & Proulx-Ouellet, S. (2020). River temperature research and practice: Recent challenges and emerging opportunities for managing thermal habitat conditions in stream ecosystems. Science of the Total Environment, 736, 139679.
Packman, A. I., & Salehin, M. (2003). Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia, 494(1), 291-297.
Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-causedthermal degradation. Environmental management, 27(6), 787-802.
Qiu, H., Hamilton, S. K., & Phanikumar, M. S. (2019). Modeling the effects of vegetation on stream temperature dynamics in a large, mixed land cover watershed in the Great Lakes region. Journal of Hydrology. doi: 10.1016/j.jhydrol.2019.124283
Roesky, B. J. (2020). The Thermal Regime and Groundwater-Surface Water Exchange in a Sub-Alpine Headwater Stream (Unpublished master's thesis). University of Calgary, Calgary, AB.
Rolick, R. (2017). Stream thermal regimes within an alpine discontinuous permafrost catchment, southern Yukon Territory.
Roth, T. R., Westhoff, M. C., Huwald, H., Huff, J. A., Rubin, J. F., Barrenetxea, G., ... & Parlange, M. B. (2010). Stream temperature response to three riparian vegetation scenarios by use of a distributed temperature validated model. Environmental science & technology, 44(6), 2072-2078.
Runkel, R. L., McKnight, D. M., & Rajaram, H. (2003). Modeling hyporheic zone processes. Advances in Water Resources, 26(9), 901-905.
Rutherford, J. C., Blackett, S., Blackett, C., Saito, L., & Davies‐Colley, R. J. (1997). Predicting the effects of shade on water temperature in small streams. New Zealand journal of marine and freshwater research, 31(5), 707-721.
Samani, Z. (2000). Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of irrigation and drainage engineering, 126(4), 265-267.
Schaper, J. L., Posselt, M., Bouchez, C., Jaeger, A., Nuetzmann, G., Putschew, A., Singer, G. & Lewandowski, J. (2019). Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon. Environmental Science & Technology, 53(8), 4224-4234, doi:10.1021/acs.est.8b06231.
Schmadel, N. M., Ward, A. S., Lowry, C. S., & Malzone, J. M. (2016). Hyporheic exchange controlled by dynamic hydrologic boundary conditions. Geophysical Research Letters, 43(9), 4408-4417.
Schmidt, C., Conant Jr, B., Bayer-Raich, M., & Schirmer, M. (2007). Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. Journal of Hydrology, 347(3-4), 292-307.
Sinokrot, B. A., & Stefan, H. G. (1993). Stream temperature dynamics: measurements and modeling. Water resources research, 29(7), 2299-2312.
Sinokrot, B. A., & Stefan, H. G. (1994). Stream water-temperature sensitivity to weather and bed parameters. Journal of Hydraulic Engineering, 120(6), 722-736.
Somers, K. A., Bernhardt, E. S., Grace, J. B., Hassett, B. A., Sudduth, E. B., Wang, S., & Urban, D. L. (2013). Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science, 32(1), 309-326.
Somers, L. D., Gordon, R. P., McKenzie, J. M., Lautz, L. K., Wigmore, O., Glose, A., ... & Condom, T. (2016). Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrological Processes, 30(17), 2915-2929.
Sridhar, V., Sansone, A. L., LaMarche, J., Dubin, T., & Lettenmaier, D. P. (2004). Prediction of Stream Temperature in Forested Watersheds. Journal of the American Water Resources Association, 40(1), 197-213.
Stonedahl, S. H., Harvey, J. W., Wörman, A., Salehin, M., & Packman, A. I. (2010). A multiscale model for integrating hyporheic exchange from ripples to meanders. Water Resources Research, 46(12).
Stonestrom, D., & Constantz, J. (2003). Heat as a tool for studying the movement of ground water near streams USGS Circular 1260. US Geological Survey, Denver, CO.
Story, A., Moore, R. D., & Macdonald, J. S. (2003). Stream temperatures in two shaded reaches below cutblocks and logging roads: downstream cooling linked to subsurface hydrology. Canadian Journal of Forest Research, 33(8), 1383-1396.
Tague, C., Farrell, M., Grant, G., Lewis, S., & Rey, S. (2007). Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon. Hydrological Processes: An International Journal, 21(24), 3288-3300.
Tonina, D. (2005). Interaction between river morphology and intra-gravel flow paths within the hyporheic zone. University of Idaho.
Tonina, D. (2012). Surface water and streambed sediment interaction: The hyporheic exchange. Fluid mechanics of environmental interfaces, 255-294.
Tonina, D., & Buffington, J. M. (2007). Hyporheic exchange in gravel bed rivers with pool‐riffle morphology: Laboratory experiments and three‐dimensional modeling. Water Resources Research, 43(1).
Tonina, D., & Buffington, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass, 3(3), 1063-1086.
Toran, L. (2017). Groundwater-Surface water interactions: A review for Encyclopedia of Water.
Trauth, N., Schmidt, C., Maier, U., Vieweg, M., & Fleckenstein, J. H. (2013). Coupled 3‐D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool‐riffle system. Water Resources Research, 49(9), 5834-5850.
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third‐order stream in northwestern California: Hyporheic processes. Ecology, 70(6), 1893-1905.
Tung, C. P., Lee, T. Y., & Yang, Y. C. (2006). Modelling climate‐change impacts on stream temperature of Formosan landlocked salmon habitat. Hydrological Processes: An International Journal, 20(7), 1629-1649.
Tung, C. P., Lee, T. Y., Huang, J. C., Perng, P. W., Kao, S. J., & Liao, L. Y. (2014). The development of stream temperature model in a mountainous river of Taiwan. Environ Monit Assess, 186(11), 7489-7503. doi: 10.1007/s10661-014-3942-z
Ward, J. C. (1963). Annual variation of stream water temperature. Journal of the Sanitary Engineering Division, 89(6), 1-16.
Wawrzyniak, V., Piégay, H., Allemand, P., Vaudor, L., & Grandjean, P. (2013). Prediction of water temperature heterogeneity of braided rivers using very high resolution thermal infrared (TIR) images. International Journal of Remote Sensing, 34(13), 4812-4831.
Webb, B. W., & Crisp, D. T. (2006). Afforestation and stream temperature in a temperate maritime environment. Hydrological Processes: An International Journal, 20(1), 51-66.
Webb, B. W., & Walling, D. E. (1996). Long-term variability in the thermal impact of river impoundment and regulation. Applied Geography, 16(3), 211-223.
Webb, B. W., & Zhang, Y. (1997). Spatial and seasonal variability in the components of the river heat budget. Hydrological processes, 11(1), 79-101.
Webb, B. W., & Zhang, Y. (1999). Water temperatures and heat budgets in Dorset chalk water courses. Hydrological Processes, 13(3), 309-321.
Webb, B. W., & Zhang, Y. (2004). Intra‐annual variability in the non‐advective heat energy budget of Devon streams and rivers. Hydrological Processes, 18(11), 2117-2146.
Webb, B. W., Clack, P. D., & Walling, D. E. (2003). Water–air temperature relationships in a Devon river system and the role of flow. Hydrological processes, 17(15), 3069-3084.
Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., & Nobilis, F. (2008). Recent advances in stream and river temperature research. Hydrological Processes, 22(7), 902-918. doi: 10.1002/hyp.6994
Wehrly, K. E., Wang, L., & Mitro, M. (2007). Field-based estimates of thermal tolerance limits for trout: incorporating exposure time and temperature fluctuation. Transactions of the American Fisheries Society, 136(2), 365-374.
Wenger, S. J., Isaak, D. J., Luce, C. H., Neville, H. M., Fausch, K. D., Dunham, J. B., ... & Williams, J. E. (2011). Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proceedings of the National Academy of Sciences, 108(34), 14175-14180.
Westhoff, M., Savenije, H., Luxemburg, W. J., Stelling, G., Van de Giesen, N., Selker, J., Uhlenbrook, S. (2007). A distributed stream temperature model using high resolution temperature observations. Hydrology and Earth System Sciences Discussions, 11(4), 1469-1480.
White, D. & Hendricks, S. (2000). Lotic Macrophytes and Surface–Subsurface Exchange Processes. In (Vol. 40, pp. 363-379).
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123.
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A., Benischke, R., ... & Hergarten, S. (2016). Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeology journal, 24(4), 937-953.
Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1999). Ground water and surface water. A single resource. USGS Circular, 1139.
Wu, L. (2020). Dynamic hyporheic responses to transient discharge, temperature and groundwater table. Humboldt-Universität zu Berlin.
Xin, Z., & Kinouchi, T. (2013). Analysis of stream temperature and heat budget in an urban river under strong anthropogenic influences. Journal of Hydrology, 489, 16-25.
Xu, C. Y., & Singh, V. P. (2001). Evaluation and generalization of temperature‐based methods for calculating evaporation. Hydrological processes, 15(2), 305-319.
Yang, K., & Koike, T. (2005). A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resources Research, 41(10).
Younus, M., Hondzo, M., & Engel, B. A. (2000). Stream temperature dynamics in upland agricultural watersheds. Journal of Environmental Engineering, 126(6), 518-526.
Zheng, L., Cardenas, M. B., & Wang, L. (2016). Temperature effects on nitrogen cycling and nitrate removal‐production efficiency in bed form‐induced hyporheic zones. Journal of Geophysical Research: Biogeosciences, 121(4), 1086-1103.