研究生: |
李彥賢 Yen-Hsien, Lee |
---|---|
論文名稱: |
(1)血基質分子在二氧化鈦奈米粒子上的光化學(2)鋅二價席夫鹼錯合物的光物理 (1)Photochemistry of Hemin on TiO2 nanoparticle(2)Photophysics of Zinc(II) Schiff-base Complexes |
指導教授: |
張一知
Chang, I-Jy |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
中文關鍵詞: | 血基質 、二氧化鈦奈米粒子 、光化學 、鋅錯合物 、席夫鹼 、光物理 |
英文關鍵詞: | Hemin, TiO2 nanoparticle, photochemistry, Zinc(II) complex, Schiff base, photophysics |
論文種類: | 學術論文 |
相關次數: | 點閱:317 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
被修飾於二氧化鈦奈米粒子上的血基質分子(iron(III)protoporphyrin),經可見光激發後,可傳遞電子到二氧化鈦奈米粒子的傳導帶,此電子流可被外接安培計偵測。藉由連接外電路,電子流可被導入另一內含甲基藍(methylene blue)的電極,並將甲基藍還原成leucomethylene blue。可由其在265 nm處生成的吸收峰證明。電子傳遞後的血基質分子,在水中會氧化2,2'-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)成ABTS自由基。可由其在414 nm處生成的吸收峰證明。氧化的血基質在有機溶劑中,與guaiacol反應,會在350 nm處生成一吸收峰,但目前無法判斷產物。血基質分子修飾的二氧化鈦奈米粒子一旦和含有酸基的反應物接觸,血基質分子就會從二氧化鈦上脫落。
十個鋅二價席夫鹼錯合物受光激發後,會進行n到Pi*的躍遷,其吸收峰約在380 nm,並由單重激發態放光,其放光的位置約在460 nm。它們的放光量子產率很高,其中有些達到了0.5,生命期則約為5 ns,這都是從單重激發態放光的結果。這些錯合物在相對於標準氫電極(NHE)約1 V之處有不可逆的氧化電位。它們比席夫鹼容易氧化,差距約為200 mV。
Hemin (iron(III) protoporphyrin) was convently attached to TiO2 nanoparticle through ester bond from propanic acid and the TiO2 surface hydroxyl group. Upon visible-light excitation, hemin injected an electron into the conduction band of TiO2 nanoparticle. The electron flow is evidenced by the reduction of methylene blue to leucomethylene blue (abs. max = 265 nm) through outer circuit to a separate compartment. The current can be measured by an amperometer. After electron transfer, oxidized hemin can oxidize ABTS (2,2’-azino-di-(3-ethylbenzthiazoline- 6-sulphonic acid)) to its radical (abs. max = 414 nm) in water. In organic solvent, oxidized hemin reacts with guaiacol to give unidentified products (abs. max = 350 nm). Hemin falls off from TiO2 while contacts with reagents containing acid groups.
Ten Zinc(II) Schiff-base complexes exhibit n to Pi* transition around 380 nm, which leads to emission around 460 nm. High emission quantum yield (~ 0.5) and short lifetime (~ 5 ns) are typical for a singlet excited state emission. These complexes exhibit irreversible oxidation potential about 1.0 V verses NHE. All complexes are easier to be oxidized than free bases by about 200 mV.
Part 1
1. Gräztel, M. Nature 2001, 414, 338-344.
2. Nelson, D. L.; Cox, M. M. In Lehninger Principles of
Biochemistry; Ahr, K., Ryan, M., Eds.; W. H. Freeman and
Company: New York, 2005; Chapter 19, pp 723-745.
3. Gregg B. A. In Semiconductor Photochemistry and
Photophysics; Ramamurthy, V., Schanze, K. S., Eds;
Marcel Dekker: New York, 2003; Chapter 2, pp 51-51.
4. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker,
R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Gräztel, M.
J. Am. Chem. Soc. 1993, 115, 6382-6390.
5. (a) Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.;
Ferrere, S.; Nozik, A. J.; Lian, T. J. Phys. Chem. B
1999, 103, 3110-3119. (b) Moser, J. E.; Noukakis, D.;
Bach, U.; Tachibana, Y.; Klug, D. R.; Durrant, J. R.;
Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 1998,
102, 3649-3650. (c). Haque, S. A.; Tachibana, Y.; Klug,
D. R.; Durrant, J. R. J. Phys. Chem. B 1998, 102, 1745-
1749.
6. Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.;
Gräztel, M.; Nelson, J.; Li, X.; Long. N. J.; Durrant,
J. R. J. Am. Chem. Soc. 2004, 126, 5225-5233.
7. (a) Raque, S. A..; Tachibana, Y.; Willis, R. L.; Moser,
J. E.; Gräztel, M.; Klug, D. R.; Durrant, J. R.; J.
Phys. Chem. B 2000, 104, 538-547. (b) Karlsson, P. G.;
Bolik, S.; Richter, J. H.; Mahrov, B.; Johansson, E. M.
J.; Blomquist, J.; Uvdal, P.; Rensmo, H.; Siegbahn, H.;
Sandell, A. J. Chem. Phys. 2004, 120, 11224-11232.
8. (a) Campbell, W. M.; Burrell, A. K.; Officer, D. L.;
Jolley, K. W. Coord. Chem. Rev. 2004, 248, 1363-1379.
(b) Komori, T.; Amao, Y. electrochemistry 2003, 71, 174-
176. (c) Wang, X. F.; Matsuda, A.; Koyama, Y.; Nagae,
H.; Sasaki, S.; Tamiaki, H.; Wada, Y. Chem. Phys. Lett.
2006, 423, 470-475.
9. Dunford, H. B. Heme Peroxidase; John Wiley & Sons: New
York, 1999.
10. (a) Bonagura, C. A.; Bhaskar, B.; Shimizu, H.; Li, H.;
Sundaramoorthy, M.; McRee, D. E.; Goodin, D. B.; Poulos,
T. L. Biochemistry 2003, 42, 5600-5608. (b) Derat, E.;
Kumar, D.; Hirao. H.; Shaik, S. J. Am. Chem. Soc. 2006,
128, 473-484.
11. Berglund, G. I.; Carlsson, G. H.; Smith, A. T.; Szöke,
H.; Henriksen, A.; Hajdu, J. Nature 2002, 417, 463-468.
12. Onuoha, A. C.; Zu, X.; Rusling, J. F.; J. Am. Chem.
Soc. 1997, 119, 3979-3986.
13. Barbé, C. J.; Arendse, F.; Comte, P.; Jirousek, M.;
Lenzmann, F.; Shklover, V.; Gräztel, M. J. Am. Ceram.
Soc. 1997, 80, 3157-3171.
14. Anpo M.; Shima T.; Kodama S.; Kubokawa Y. J. Phys.
Chem. 1987, 91, 4305-4310.
15. (a) Fung, A. K. M.; Chiu, B. K. W.; Lam, M. H. W. Water
Research 2003, 37, 1939-1947. (b) Péchy, P.; Rotzinger,
F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S.
M.; Humphry-Baker, R.; Gräztel, M. J. Chem. Soc., Chem.
Comm. 1995, 1, 65-66. (c) Bonhôte, P.; Moser, J. E.;
Vlachopoulos, N.; Walder, L.; Zakeeruddin, S. M.;
Humphry-Baker, R.; Péchy, P.; Gräztel, M. Chem. Commun.
1996, 10, 1163-1164. (d) Ghosh, P. K.; Spiro, T. G. J.
Am. Chem. Soc. 1980, 102, 5543-5549. (e) Christ, C. S.
Jr.; Yu, J.; Zhao, X.; Palmore, G. T. R.; Wrighton, M.
S. Inorg. Chem. 1992, 31, 4439-4440. (f) Kuhler, R. J.;
Santo, G. A.; Caudlll, T. R.; Betterton, E. A.; Arnold,
R. G. Environ. Sci. Technol. 1993, 27, 2104-2111.
16. Hashimoto, K.; Irie, H.; Fujishima, A. Jpn. J. Appl.
Phys. 2005, 44, 8269-8285.
17. Bard, A. J.; Faulkner, L. R. In Electrochemical Methods
Fundamentals and Applications; Harris, D., Swain, E.,
Aiello, E., Eds.; John Wiley & Sons: New York, 2001;
Chapter 1, pp 23-24.
18. Guilbault, G. G.; Kramer, D. N.; Hackley, E. B. Anal.
Chem. 1967, 39, 271-271.
19. Doerge, D. R.; Divi, R. L.; Churchwell, M. I. Anal.
Biochem. 1997, 250, 10-17.
20. Impert, O.; Katafias, A.; Kita, P.; Mills, A.;
Pietkiewicz-Graczyk, A.; Wrzeszcz, G. Dalton Trans.
2003, 3, 348-353.
21. Childs, R. E.; Bardsley, W. G. Biochem. J. 1975, 145,
93-103.
22. (a) Gibson, J. F.; Ingram, D. J. E.; Nicholls, P.
Nature 1958, 181, 1398-1399. (b) He, B.; Sinclair, R.;
Copeland, B. R.; Makino, R.; Powers, L. S.; Yamazaki,
I. Biochemistry 1996, 35, 2413-2420. (c) Gunther, M.
R.; Tschirret-Guth, R. A.; Lardinois, O. M.; Ortiz de
Montellano, P. R. Chem. Res. Toxicol. 2003, 16, 652-
660. (d) Svistunenko, D. A.; Dunne, J.; Fryer, M.;
Nicholls, P.; Reeder, B. J.; Wilson, M. T.; Bigotti, M.
G.; Cutruzzolà, F.; Cooper, C. E. Biophys. J. 2002, 83,
2845-2855.
23. (a) Katz, E.; Lioubashevski, O.; Willner, I. J. Am.
Chem. Soc. 2005, 127, 3979-3988. (b) Astuti, Y.;
Palomares, E.; Haque, S. A.; Durrant, J. R. J. Am.
Chem. Soc. 2005, 127, 15120-15126.
Part 2.
1. Kalinowski, J. J. Phys. D: Appl. Phys. 1999, 32, R179–
R250.
2. Lin, B. C.; Cheng, C. P.; You, Z. Q.; Hsu, C. P. J. Am.
Chem. Soc. 2005, 127, 66-67.
3. Cozzi, P. G.; Dolci, L. S.; Garelli, A.; Montalti, M.;
Prodi, L.; Naccheroni, N. New. J. Chem. 2003, 27, 692-
697.
4. Brinkmann, M.; Gadret. G.; Muccini, M.; Taliani, C.;
Masciocchi, N.; Sironi, A. J. Am. Chem. Soc. 2000, 122,
5147-5157.
5. Barltrop, J. A.; Coyle, J. D. Principles of
Photochemistry; John Wiley & Sons: New York, 1978;
Chapter 2, pp 11-16.
6. Barltrop, J. A.; Coyle, J. D. Principles of
Photochemistry; John Wiley & Sons: New York, 1978;
Chapter 2, pp 59-61.
7. Barltrop, J. A.; Coyle, J. D. Principles of
Photochemistry; John Wiley & Sons: New York, 1978;
Chapter 2, pp 32-33.
8. Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of
Photochemistry; Marcel Dekker: New York, 1993; Chapter
1, pp 4-53.
9. Turro, N. J. Modern Molecular Photochemistry; University
Science Books: Sausalito, 1991; Chapter 1, pp 3-8.
10. O'Connor, D. V.; Phillips, D. Time-Corrected Single
Photon Counting; Acadenic Press: London, 1984
11. Bella, S. D.; Fragalà, I.; Ledoux, I.; Diaz-Garcia, M.
A.; Marks, T. J. J. Am. Chem. Soc. 1997, 119, 9550-9557.