研究生: |
池彩綾 |
---|---|
論文名稱: |
電催化反應之應用與研究 |
指導教授: |
王忠茂
Wang, Chong-Mou |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 超過氧化物 |
英文關鍵詞: | superoxide |
論文種類: | 學術論文 |
相關次數: | 點閱:210 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
含鐵黏土修飾電極可有效催化發光胺(3-aminophthalhydrazide,簡稱luminol)與過氧化氫之化學發光反應。為能探討此反應中所涉及之含氧中間產物,本論文利用N-acetyl-3,7-dihydroxyphenoxazine(簡稱amplex red)進行偵測。Amplex red可與氫氧自由基反應,並產生resorufin。我們藉由resorufin之生成及其螢光光譜,發現含鐵黏土微粒可有效催化生成O2-.離子自由基與OH.自由基。由於此一結果,我們便利用黏土修飾電極、葡萄糖酵素與amplex red對葡萄糖進行定量分析。此外,實驗亦顯示:維生素K3可有效催化O2-.離子自由基與OH.自由基之生成。根據此一結果,我們成功利用維生素K3、Fe(II)離子、超過氧物轉化酵素(superoxide dismutase,簡稱SOD)對二氯丙酸鈉、氯丙醇與氯酚進行分解。
Abstract
In order to identify the reactive oxygen species generated in the luminol chemiluminescence reaction, we used N-acetyl-3,7-dihydroxyphenoxazine (denoted amplex red) as a probe. Amplex red can react with hydroxyl radical to produce resorufin. Resorufin is a highly fluorescing species. Its formation and the associated characteristic emission bands become a useful tool in diagnosis of the reactive oxygen species derived from H2O2. In this thesis we described the results during this characterization. Besides, we also found that vitamin K3 (denoted VK3) is a useful electrochemical catalyst. Cyclic voltammetry and emission spectroscopy suggested that VK3 might form 1:1 complexes with 3-chloropropanol and sodium 2,3-dichloropropionate. The equilibrium constants were estimated to be 1000 M-1 and 100 M-1, respectively, for the reaction of VK3 with 3-chloropropanol and sodium 2,3-dichloropropionate based on the electrochemical techniques. Based on the emission spectroscopic method, the equilibrium constants were slightly greater, about 104 M-1. The reduced VK3 was also found as an effective catalyst for the reduction of oxygen. By using superoxide dismutase (SOD) and amplex red as probes, we confirmed that superoxide anion radical and the derived reactive oxygen species could be produced in aerated solutions as VK3 was incorporated. According to the in-situ monitoring of the proton levels in these systems, the reactive oxygen species produced by the catalysis of VK3 in aerated solutions were evidenced to be able to cause degradation of these chlorinated compounds.
1. A. Sanches Ferrer, J. S. Santema, R. Hilhorst, and A. J. W. G. Visser, Anal. Biochem. (1990) 187,129
2. M. B. Youdim, and, M. Tenne, Method Enzmol. (1987) 142, 617
3. J. De la Harpe, and C. F. Nathan, J. Immunol. Methods (1985) 78, 323
4. G. P. Bortea, and R. J. Thibert, J. Microchem. (1988) 37, 368
5. M. Zhou, Z. Diwu, N. Panchuk-Voloshina, and RP. Haugland, Anal. Biochem. (1997) 253, 162
6. M. Zhou, J. Chapman, Anal. Chim. Acta (1999) 420, 47
7. M. Zhou, M. A. Drake, J. Biophys. Mtehods (1999) 38, 43
8. S. F. Cheng, J. Chin Chem. Soc. (1989) 45, 127
9. P. K. Ghosh and A. J. Bard, J. Am. Chem. Soc. (1983) 105, 5691
10. J. M. Zen and C. W. Lo, Anal. Chem. (1995) 68, 2635
11. C. Lei and J. Deng, Anal. Chem. (1996) 68, 3344
12. S. A. Lee and A. Futch, J. Phys. Chem. (1990) 94, 4998
13. A. Futch and P. Subramanian, J. Electroanal. Chem. (1993) 362, 177
14. P. D. Kaviratna and T. J. Pinnavaia, J. Electroanal. Chem. (1995) 385, 163
15. J. K. Thomas, Chem. Rev. (1993) 93, 301
16. S. C. Shyu and C. M. Wang, J. Electrochem. Soc. (1997) 144, 3419
17. C. S. Ouyang and C. M. Wang, J. Electrochem. Soc. (1998) 145, 5654
18. L. D. Bowers and P. W. Carr, Anal. Chem. (1976) 48, 544A
19. H. H. Weetall, Anal. Chem. (1974) 46, 602A
20. R. F. Lane and T. Hubbard, J. Electroanal. Chem. (1973) 91, 1285
21. Y. Degani and A. Heller, J. Phys. Chem. (1987) 91, 1285
22. N. C. Foulds and C. R. Lowe, Anal. Chem. (1988) 60, 2473
23. S. Ghobadi, E. Csoregi, G. Marko-Varga, and L. Gorton, Current Separation (1996) 14, 94
24. J. A. Cox and R. K. Jaworski, Anal. Chem. (1989) 61, 2176
25. D. T. Sawyer, J. S. Valentine, Acc. Chem. Res. (1981) 14, 393
26. G. Mark, H. P. Schuchmann, C. von Sonntag, J. Am. Chem. Soc. Communication (2000) 122, 3781
27. S. Fukuzumi, M. Patz, T. Suenobu, S. Itoh, J. Am. Chem. Soc. (1999) 121, 1605
28. M. Lessel, Tetrahedron Lett. (1984) 2213
29. C. M. Collins, C. Sotiriou-Leventis, M. T. Canalas, Electrochimica Acta (2000) 45, 2049
30. W. L. Milleer, D. W. King, J. Lin, D. R. Mar, Mar. Chem. (1995) 50, 63
31. B. M. Voelker, D. L. Sedlak, Mar. Chem. (1995) 50, 93
32. B. M. Voelker, D. L. Sedlak, O. C. Zafiriou, Environ. Sci. & Technol. (2000) 34, 1036
33. J. S. Bedkman, J. P. Crow, Biochem. Soc. Trans. (1993)21, 330
34. H. Ischiropoulos, L. Zhu, J. S. Beckman, Biochem. Biophys. (1992) 298, 446
35. F. Lantoine, S. Trevin, F. Bedioui, J. Devynck, J. Electroanal. Chem. (1995) 392, 85
36. F. Lantoine, S. Trevin, F. Bedioui, J. Devynck, A. Brunet, M. A. Devynck, Biosens. Bioelectron. (1997) 12, 205
37. C. Privat, S. Trevin, F. Bedioui, J. Devynck, J. Electroanal. Chem. (1997) 436, 261
38. J. Song Y. Shao W. Guo, Electrochem. Commun. (2001) 3, 239
39. P. Dowd, R. Hershline, S. W. Ham, S. Naganathan, Science (1995) 269, 1684
40. L. F. Fieser, J. Bio. Chem. (1940) 133, 391
41. M. Periasamy, M. V. Bhatt, Tetrahedron Lett. (1978) 4, 4561
42. S. Yamaguchi, M. Inoue, S. Enomot, Chem. Lett. (1985) 827
43. W. Adam, W. A. Herrmann, J. Lin, C. R. Saha-Moller, R. W. Fischer, J. D. G. Correia, Angew. Chem., Int. Ed. Engl. (1994) 33, 2475
44. J. Skarzwski, J. Tetrahedron (1984) 40, 4997
45. G. Labat, J. L. Seris, B. Meunier, Angew. Chem., Int. Ed. Engl. (1990) 29, 1471
46. G. Labat, B. Meunier, J. Org. Chem. (1989) 54, 5008
47. G. Labat, J. Bernadou, M. Bonnfous, P. Loiseau, B. Meunier, Drug Metab. Dispos. (1991) 19, 36
48. T. Higuchi, C. Sataka, M. Horobe, J. Am. Chem. Soc. (1995) 117, 8879
49. B. Meunier, New J. Chem. (1992) 16, 203
50. J. J. Berzas Nevado, J. A. Murillo Pulgarin, M. A. Gomez Laguna, Talanta (2000) 53, 951
51. Z. Liu, T. Li, J. Li, E. Wang, Anal. Chim. Acta (1997) 338, 57
52. Z. Zhu, N. Q. Li, Electroanalysis (1999) 11, 1145
53. Z. Liu, J. Li, T. You, X. Yang, E. Wang, Electroanalysis (1999) 11, 53
54. F. J. Gonzalez, Electroanalysis (1998) 10, 38
55. Y. Yashiki, S. Yamashoji, J. Ferment. Bioeng. (1996) 82, 319
56. G. Mileski, Appl. Environ. Microbio. (1998) 54, 2885
57. C. A. Jackson-Moss, Water. Sci. Technol. (1992) 26, 427
58. J. K. Jokela, Environ. Sci. & Technol. (1993) 27, 547
59. C. F. Gokcay, Water. Sci. Technol. (1994) 29, 165
60. T. Zhang, Q. Zhao, H. Huang, Q. Li, Y. Zhang, Chemosphere (1998) 37, 1571
61. Significance and Treatment of Volatile Organic Compounds in Water Supplies (1990) p.313-362
62. C. Adams, P. A. Scanlan, N. D. Secrist, Environ. Sci. Technol. (1994) 28, 1812
63. T. J. Conocchioli, E. J. Hamilton, N. J. Sutin, J. Am. Chem. Soc. (1965) 87, 926
64. T. Logager, J. Holeman, K. Sehested, T. Pedersen, Inorg. Chem. (1992) 31, 3523
65. D. L. Sedlack, J. Hoigne, M. M. David, R. N. Colvile, E. Seyyffer, K. Acker, W. Wiepercht, L. Wolfgang, J. A. Lind, S. Fuzzi, Atoms. Environ. (1997) 31, 3523
66. W. S. Kuo, Chemosphere (1999) 39, 1853
67. S. Roser, B. Enric, Appl. Catalysis B: Environmental. (2001) 29, 135
68. C. Walling, Acc. Chem. Res. (1975) 8, 125
69. G. Sprah, S. Harms, Chemosphere (1995) 30, 9
70. J. Lahnseiner, B. Pouresmael, Chemosphere (1999) 38, 2315
71. Y. Nagata, M. Nakagawa, H. Okuno, Y. Mizukoshi, B. Yim, Y. Maeda, Ultrason. Sonochem. (2000) 7, 115-120
72. T. Matsue, H. Yamada, H. C. Chang, I. Uchida, Bioelectrochem. Bioenerg. (1990) 24, 347