簡易檢索 / 詳目顯示

研究生: 池彩綾
論文名稱: 電催化反應之應用與研究
指導教授: 王忠茂
Wang, Chong-Mou
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 126
中文關鍵詞: 超過氧化物
英文關鍵詞: superoxide
論文種類: 學術論文
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    含鐵黏土修飾電極可有效催化發光胺(3-aminophthalhydrazide,簡稱luminol)與過氧化氫之化學發光反應。為能探討此反應中所涉及之含氧中間產物,本論文利用N-acetyl-3,7-dihydroxyphenoxazine(簡稱amplex red)進行偵測。Amplex red可與氫氧自由基反應,並產生resorufin。我們藉由resorufin之生成及其螢光光譜,發現含鐵黏土微粒可有效催化生成O2-.離子自由基與OH.自由基。由於此一結果,我們便利用黏土修飾電極、葡萄糖酵素與amplex red對葡萄糖進行定量分析。此外,實驗亦顯示:維生素K3可有效催化O2-.離子自由基與OH.自由基之生成。根據此一結果,我們成功利用維生素K3、Fe(II)離子、超過氧物轉化酵素(superoxide dismutase,簡稱SOD)對二氯丙酸鈉、氯丙醇與氯酚進行分解。

    Abstract
    In order to identify the reactive oxygen species generated in the luminol chemiluminescence reaction, we used N-acetyl-3,7-dihydroxyphenoxazine (denoted amplex red) as a probe. Amplex red can react with hydroxyl radical to produce resorufin. Resorufin is a highly fluorescing species. Its formation and the associated characteristic emission bands become a useful tool in diagnosis of the reactive oxygen species derived from H2O2. In this thesis we described the results during this characterization. Besides, we also found that vitamin K3 (denoted VK3) is a useful electrochemical catalyst. Cyclic voltammetry and emission spectroscopy suggested that VK3 might form 1:1 complexes with 3-chloropropanol and sodium 2,3-dichloropropionate. The equilibrium constants were estimated to be 1000 M-1 and 100 M-1, respectively, for the reaction of VK3 with 3-chloropropanol and sodium 2,3-dichloropropionate based on the electrochemical techniques. Based on the emission spectroscopic method, the equilibrium constants were slightly greater, about 104 M-1. The reduced VK3 was also found as an effective catalyst for the reduction of oxygen. By using superoxide dismutase (SOD) and amplex red as probes, we confirmed that superoxide anion radical and the derived reactive oxygen species could be produced in aerated solutions as VK3 was incorporated. According to the in-situ monitoring of the proton levels in these systems, the reactive oxygen species produced by the catalysis of VK3 in aerated solutions were evidenced to be able to cause degradation of these chlorinated compounds.

    目 錄 圖目錄----------------------------------------------------Ⅰ 中文摘要 --------------------------------------------------1 英文摘要 --------------------------------------------------2 第一章 緒論------------------------------------------------4 1-1分子發光光譜介紹----------------------------------------4 1-2黏土----------------------------------------------------7 1-3酵素電極-----------------------------------------------11 1-4 超過氧離子自由基(superoxide anion radical,O2.-)------13 1-5維他命K3簡介-------------------------------------------15 1-6 含氯有機物分解----------------------------------------17 第二章 實驗部分 ------------------------------------------18 2-1化學藥品-----------------------------------------------18 2-2實驗設備-----------------------------------------------22 2-3黏土前處理---------------------------------------------23 2-4電極之前處理與製備-------------------------------------24 2-5儀器配置-----------------------------------------------26 第三章實驗結果與討論--------------------------------------27 3-1Amplex Red 的氧化還原性質探討--------------------------27 3-2維他命K3之電化學特性探討-------------------------------48 3-3維他命K3對含氯有機物之研究-----------------------------67 第四章 結論----------------------------------------------125 第五章 參考文獻 -----------------------------------------126

    1. A. Sanches Ferrer, J. S. Santema, R. Hilhorst, and A. J. W. G. Visser, Anal. Biochem. (1990) 187,129
    2. M. B. Youdim, and, M. Tenne, Method Enzmol. (1987) 142, 617
    3. J. De la Harpe, and C. F. Nathan, J. Immunol. Methods (1985) 78, 323
    4. G. P. Bortea, and R. J. Thibert, J. Microchem. (1988) 37, 368
    5. M. Zhou, Z. Diwu, N. Panchuk-Voloshina, and RP. Haugland, Anal. Biochem. (1997) 253, 162
    6. M. Zhou, J. Chapman, Anal. Chim. Acta (1999) 420, 47
    7. M. Zhou, M. A. Drake, J. Biophys. Mtehods (1999) 38, 43
    8. S. F. Cheng, J. Chin Chem. Soc. (1989) 45, 127
    9. P. K. Ghosh and A. J. Bard, J. Am. Chem. Soc. (1983) 105, 5691
    10. J. M. Zen and C. W. Lo, Anal. Chem. (1995) 68, 2635
    11. C. Lei and J. Deng, Anal. Chem. (1996) 68, 3344
    12. S. A. Lee and A. Futch, J. Phys. Chem. (1990) 94, 4998
    13. A. Futch and P. Subramanian, J. Electroanal. Chem. (1993) 362, 177
    14. P. D. Kaviratna and T. J. Pinnavaia, J. Electroanal. Chem. (1995) 385, 163
    15. J. K. Thomas, Chem. Rev. (1993) 93, 301
    16. S. C. Shyu and C. M. Wang, J. Electrochem. Soc. (1997) 144, 3419
    17. C. S. Ouyang and C. M. Wang, J. Electrochem. Soc. (1998) 145, 5654
    18. L. D. Bowers and P. W. Carr, Anal. Chem. (1976) 48, 544A
    19. H. H. Weetall, Anal. Chem. (1974) 46, 602A
    20. R. F. Lane and T. Hubbard, J. Electroanal. Chem. (1973) 91, 1285
    21. Y. Degani and A. Heller, J. Phys. Chem. (1987) 91, 1285
    22. N. C. Foulds and C. R. Lowe, Anal. Chem. (1988) 60, 2473
    23. S. Ghobadi, E. Csoregi, G. Marko-Varga, and L. Gorton, Current Separation (1996) 14, 94
    24. J. A. Cox and R. K. Jaworski, Anal. Chem. (1989) 61, 2176
    25. D. T. Sawyer, J. S. Valentine, Acc. Chem. Res. (1981) 14, 393
    26. G. Mark, H. P. Schuchmann, C. von Sonntag, J. Am. Chem. Soc. Communication (2000) 122, 3781
    27. S. Fukuzumi, M. Patz, T. Suenobu, S. Itoh, J. Am. Chem. Soc. (1999) 121, 1605
    28. M. Lessel, Tetrahedron Lett. (1984) 2213
    29. C. M. Collins, C. Sotiriou-Leventis, M. T. Canalas, Electrochimica Acta (2000) 45, 2049
    30. W. L. Milleer, D. W. King, J. Lin, D. R. Mar, Mar. Chem. (1995) 50, 63
    31. B. M. Voelker, D. L. Sedlak, Mar. Chem. (1995) 50, 93
    32. B. M. Voelker, D. L. Sedlak, O. C. Zafiriou, Environ. Sci. & Technol. (2000) 34, 1036
    33. J. S. Bedkman, J. P. Crow, Biochem. Soc. Trans. (1993)21, 330
    34. H. Ischiropoulos, L. Zhu, J. S. Beckman, Biochem. Biophys. (1992) 298, 446
    35. F. Lantoine, S. Trevin, F. Bedioui, J. Devynck, J. Electroanal. Chem. (1995) 392, 85
    36. F. Lantoine, S. Trevin, F. Bedioui, J. Devynck, A. Brunet, M. A. Devynck, Biosens. Bioelectron. (1997) 12, 205
    37. C. Privat, S. Trevin, F. Bedioui, J. Devynck, J. Electroanal. Chem. (1997) 436, 261
    38. J. Song Y. Shao W. Guo, Electrochem. Commun. (2001) 3, 239
    39. P. Dowd, R. Hershline, S. W. Ham, S. Naganathan, Science (1995) 269, 1684
    40. L. F. Fieser, J. Bio. Chem. (1940) 133, 391
    41. M. Periasamy, M. V. Bhatt, Tetrahedron Lett. (1978) 4, 4561
    42. S. Yamaguchi, M. Inoue, S. Enomot, Chem. Lett. (1985) 827
    43. W. Adam, W. A. Herrmann, J. Lin, C. R. Saha-Moller, R. W. Fischer, J. D. G. Correia, Angew. Chem., Int. Ed. Engl. (1994) 33, 2475
    44. J. Skarzwski, J. Tetrahedron (1984) 40, 4997
    45. G. Labat, J. L. Seris, B. Meunier, Angew. Chem., Int. Ed. Engl. (1990) 29, 1471
    46. G. Labat, B. Meunier, J. Org. Chem. (1989) 54, 5008
    47. G. Labat, J. Bernadou, M. Bonnfous, P. Loiseau, B. Meunier, Drug Metab. Dispos. (1991) 19, 36
    48. T. Higuchi, C. Sataka, M. Horobe, J. Am. Chem. Soc. (1995) 117, 8879
    49. B. Meunier, New J. Chem. (1992) 16, 203
    50. J. J. Berzas Nevado, J. A. Murillo Pulgarin, M. A. Gomez Laguna, Talanta (2000) 53, 951
    51. Z. Liu, T. Li, J. Li, E. Wang, Anal. Chim. Acta (1997) 338, 57
    52. Z. Zhu, N. Q. Li, Electroanalysis (1999) 11, 1145
    53. Z. Liu, J. Li, T. You, X. Yang, E. Wang, Electroanalysis (1999) 11, 53
    54. F. J. Gonzalez, Electroanalysis (1998) 10, 38
    55. Y. Yashiki, S. Yamashoji, J. Ferment. Bioeng. (1996) 82, 319
    56. G. Mileski, Appl. Environ. Microbio. (1998) 54, 2885
    57. C. A. Jackson-Moss, Water. Sci. Technol. (1992) 26, 427
    58. J. K. Jokela, Environ. Sci. & Technol. (1993) 27, 547
    59. C. F. Gokcay, Water. Sci. Technol. (1994) 29, 165
    60. T. Zhang, Q. Zhao, H. Huang, Q. Li, Y. Zhang, Chemosphere (1998) 37, 1571
    61. Significance and Treatment of Volatile Organic Compounds in Water Supplies (1990) p.313-362
    62. C. Adams, P. A. Scanlan, N. D. Secrist, Environ. Sci. Technol. (1994) 28, 1812
    63. T. J. Conocchioli, E. J. Hamilton, N. J. Sutin, J. Am. Chem. Soc. (1965) 87, 926
    64. T. Logager, J. Holeman, K. Sehested, T. Pedersen, Inorg. Chem. (1992) 31, 3523
    65. D. L. Sedlack, J. Hoigne, M. M. David, R. N. Colvile, E. Seyyffer, K. Acker, W. Wiepercht, L. Wolfgang, J. A. Lind, S. Fuzzi, Atoms. Environ. (1997) 31, 3523
    66. W. S. Kuo, Chemosphere (1999) 39, 1853
    67. S. Roser, B. Enric, Appl. Catalysis B: Environmental. (2001) 29, 135
    68. C. Walling, Acc. Chem. Res. (1975) 8, 125
    69. G. Sprah, S. Harms, Chemosphere (1995) 30, 9
    70. J. Lahnseiner, B. Pouresmael, Chemosphere (1999) 38, 2315
    71. Y. Nagata, M. Nakagawa, H. Okuno, Y. Mizukoshi, B. Yim, Y. Maeda, Ultrason. Sonochem. (2000) 7, 115-120
    72. T. Matsue, H. Yamada, H. C. Chang, I. Uchida, Bioelectrochem. Bioenerg. (1990) 24, 347

    無法下載圖示
    QR CODE