簡易檢索 / 詳目顯示

研究生: 姚俊丞
Yao, Jyun-Cheng
論文名稱: ON q-COUNTING OF NONCROSSING CHAINS AND PARKING FUNCTIONS
ON q-COUNTING OF NONCROSSING CHAINS AND PARKING FUNCTIONS
指導教授: 游森棚
Eu, Sen-Peng
口試委員: 游森棚
EU, Sen-Peng
徐祥峻
HSU, Hsian-Chun
郭君逸
GUO, Jun-Yi
口試日期: 2023/06/02
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
英文關鍵詞: Coxeter group, Parking function, Gamma nonnegative
研究方法: 紮根理論法
DOI URL: http://doi.org/10.6345/NTNU202300972
論文種類: 學術論文
相關次數: 點閱:117下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Josuat-Verg 在NC(W) 中給出了一個Deligne formula 的q-analogue ,其中標記的weighted我們稱之為爛邊,即此邊連接的兩個元素在strong bruhat order 和absolute order 中的大小關係剛好相反。接著我們已知Type A 的absolute order of maximal chains 的數量恰恰好是parking function 個,於是我們想在parking function 上找到和爛邊等分布的統計量。而此篇論文我們不只找到等分布的統計量(將就) ,還有給出保持統計量的bijecton 並進一步做出Type B 版本,以及給出Type B 的q-analogue 中gamma-positivity 係數的組合意義。

    1 背景與動機 1 1.1 背景 2 1.2 動機 8 2 預備知識與結果 9 2.1 Strong Bruhat order 9 2.2 Absolute order 10 2.3 Gamma-nonnegative 11 2.4 主要結果 12 2.5 證明架構 15 3 Parking function of Type A and NC(A)16 3.1 Parking function of Type A 16 3.2 NC(A) 18 4 Parking function of Type B and NC(B) 27 4.1 Parking function of Type B 27 4.2 NC(B) 28 5 Word exc 50 5.1 Word exc Type A 50 5.2 Word exc Type B 53 6 Gamma-nonnegative 55 6.1 NC(B) is Gamma-nonnegative 55 6.2 Gamma-nonnegativity in combinatorics 57 7 k-indivisible noncrossing partition 62 7.1 NC(k-indivisible) 62 7.2 k-parking function 67 8 結論 69 8.1 總結 69 8.2 未來發展及猜測 69 Bibliography 70

    [1] D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202(949) (2009).
    [2] D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. 36(5) (2003), 647—683.
    [3] P. Biane, Some properties of crossings and partitions, Discrete Math. 175(1-3)(1997), 41–53.
    [4] P. Biane, Parking functions of types A and B, Electron. J. Combin. 9 (2002), #N7.
    [5] P. Biane, F. Goodman, A. Nica, Non-crossing cumulants of type B, Trans. Amer.Math. Soc. 355 (2003), 2263—2303.
    [6] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Grad. Texts in Math., vol.231,Springer-Verlag, New York, 2005.
    [7] T. Brady, C. Watt, K(π, 1)’s for Artin groups of finite type, Geom. Dedicata 94(1)(2002), 225–250.
    [8] T. Brady, C. Watt, Non-crossing partition lattices in finite real reflection groups,Trans. Amer. Math. Soc. 360(4) (2008), 1983—2005.
    [9] F. Chapoton, Enumerative properties of generalized associahedra, Sémin. Lothar.Combin. 51 (2004), B51b.
    [10] G. Chapuy, T. Douvropoulos, Counting chains in the noncrossing partition latticevia the W-Laplacian, J. Algebra 602 (2021), 381–404.
    [11] W. Chu, Fibonacci polynomials and Sylvester determinant of tridiagonal matrix,Appl. Math. Comp. 216 (2010), 1018–1023.
    [12] P. Deligne, Letter to E. Looijenga on March 9, 1974. Reprinted in the diplomathesis of P. Kluitmann, pages 101-111.
    [13] M. Josuat-Vergès, Refined enumeration of noncrossing chains and hook formulas,Ann. Combin. 19 (2015), 443–460.
    [14] I. M. Gessel, S. Seo, A refinement of Cayley’s formula for trees, Electron. J. Com-bin. 11(2) (2004-6), R27.
    [15] V. Reiner, Non-crossing partitions for classical reflection groups. Discrete Math.177(1-3) (1997), 195–222.
    [16] V. Reiner, V. Ripoll, C. Stump, On non-conjugate Coxeter elements in well-generated reflection groups, Math. Z. 285 (2017), 1041—1062.
    [17] R. P. Stanley, Enumerative Combinatorics, vol. 1, second edition, Cambridge Uni-versity Press, New York/Cambridge, 1996.
    [18] R. P. Stanley, Parking functions and noncrossing partitions, Electron. J. Combin.4(2) (1997), R20.
    [19] C.H. Yan, Parking functions, in: M. Bóna(ed.), Handbook of Enumerative Com-binatorics. Discrete Math. Appl., CRC Press, Boca Raton, 2015, pp. 835–893.

    下載圖示
    QR CODE