研究生: |
李佳倛 Lee Chiachi |
---|---|
論文名稱: |
摻鋅鈮酸鋰晶體取代機制研究 Substitution Mechanism Study of Zn-doped LiNbO3 crystals |
指導教授: |
賈至達
Chia, Chih-Ta |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 鈮酸鋰晶體 、時間解析激發探測 、拉曼光譜 、X光吸收光譜 、電滯曲線 |
英文關鍵詞: | LiNbO3, pumpprobe, EXAFS, XANES, coercive field, substitution mechanism |
論文種類: | 學術論文 |
相關次數: | 點閱:242 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了瞭解摻鋅鈮酸鋰晶體的結構振動特性以及外來雜質鋅在鈮酸鋰晶體中的取代機制,我們針對一系列利用柴式提拉法成長,摻鋅濃度由0 mol %到8.3 mol %的一致熔融鈮酸鋰晶體進行研究,首先我們想要確認晶體聲子振動模的形式以及瞭解雜質濃度對晶體結構振動所造成的影響,故進行了時間解析激發-探測實驗與晶體的E(TO)拉曼散射光譜測量,實驗結果發現電磁偏極子的同調時間與拉曼聲子半高寬皆隨Zn濃度的增加而有變化,由電磁偏極子同調時間及聲子半高寬隨鋅濃度的變化情形,我們推斷鈮酸鋰晶體E(TO1)與E(TO2)聲子的相關振動模皆與Nb及O原子的振動相關,而E(TO3)聲子的振動模則主要決定於晶體中Li原子的振動。
接著我們想要確認出鋅在鈮酸鋰晶體中的取代位置,故分別對Zn原子及Nb原子進行X光吸收譜的實驗測量,由EXAFS光譜的分析可以確定,在摻雜濃度為8.3 mol%之前,鈮酸鋰晶體中所摻雜的Zn原子都是以+2價的形式取代在Li原子的位置,不因為濃度的增加而改變,並且不影響鈮酸鋰晶體整體的幾何結構,但是由XANES光譜分析,我們發現Zn的摻雜會使晶體中Nb原子的電子結構產生變化,並隨著Zn濃度的增加產生不同的效應。
最後利用低溫拉曼光譜、OH-吸收光譜、粉末X光繞射分析及晶體矯頑場與內場的測量,推測計算出鋅原子在鈮酸鋰晶體中的取代機制隨濃度的變化,以及晶體中缺陷數量的改變,我們所得的結果為NbLi原子約在[Zn]=5.3 mol %時完全被取代,且利用鋰空缺模型計算得到摻雜質鈮酸鋰晶體組成與Zn濃度的關係。
[1]張克從、張樂潓,晶体生長,科學出版社 (1981)
[2] Brian R. Pamplin ed., “Crystal Growth” 2nd edition,Pergamon Press Ltd. (1980)
[3] Jan Czochralski, Z. Phys. Chemie. 92 219 (1918)
[4] G. K. Teal and J. B. Little, Phys. Rev. 78 647 (1950)
[5] Donald T. J. Hurle, Crystal pulling from the melt, Springer-Verlag (1993)
[6] U. Schlarb, M. Whlecke, B. Gather, A.Reichert, Optical Materials 4 791 (1995)
[7] P. F. Bordui, R. G. Norwood, C. D. Bird and J. T. Carella, J. Appl. Phys. 78 4647 (1995)
[8] N. Iyi,K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, J. Sol. State Chem, 101 340 (1992)
[9] A. Yariv and P. C. Yeh, Optical Waves in Crystals, John Wiley & Sons, Inc. (1984)
[10] J. F. Nye, Physical Properties of Crystals, Clarendon Press, Oxford (1957)
[11] A. M. Prokhorov and Yu S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate, chapter 6, Adam Hilger (1990)
[12] B. C. Grabmaier, and F. Otto, J. Crystal Growth 79 682 (1986)
[13] T. R. Volk, N. M. Rubinina, V. L. Pryalkin , V. V. Krasnikov and V. V. Volkov, Ferroelectrics 109 345 (1990)
[15] T. Volk, M. Whlecke and N Rubinina, Ferroelectrics 183 291 (1996)
[16] M.D. Serrano, V. Bermdez, L. Arizmendi and E. Diguez, J. Crystal Growth 210n 670 (2000)
[17] Y. J. Lai, J. C. Chen and K. C. Liao, J. Crystal Growth 198/199 531 (1999)
[18] K. Buse, Adibi and Psaltis, Nature 393 665 (1998)
[19] V. Bermdez, M. D. Serrano and E. Diguez, J. Crystal Growth 200 185 (1999)
[20] E. Cantelar, R. Nevado, G. Martn, J. A. Sanz-Garca, G. Lifante, F. Cuss, M. J. Herndez and P. L. Pernas, J. of Luminescence 87-89 1096 (2000)
[21] Lerner, C. Legras et J. P. Duman, J. Crystal Growth 3/4 231 (1968)
[22] R. L. Byer, J. F. Young and F. S. Feigelson, J. Appl. Phys. 41 2320 (1970)
[23] T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Whlecke and V. Simonov, Appl. Phys. B72 647 (2001)
[24] N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, Y. Furukawa and M. Sato, J. Phys. Chem. Solids 118 148 (1995)
[25] G. Kh. Kitaeva, K. A. Kuznetsov, A. N. Penin and A. V. Shepelev, Phys. Rev. B65 54304 (2002)
[26] H. Fay, W. J. Alford and H. M. Dess, Appl. Phys. Lett. 12 89 (1968)
[27] Gary G. DeLeo, Joel L. Doboson, Physical Review B 37 14 8394 (1988)
[28] S. C. Abrahams, H. J. Levinstein and J. M. Reddy, J. Phys. Chem. Solids 27 1019 (1966)
[29] S. C. Abrahams and P. Marsh, Acta Cryst. B42 61-68 (1986)
[30] G. E. Peterson and A. Carnevale, J. Chem. Phys 56 4848 (1971)
[31] Q. Zhang and X. Feng, Phys. Stat. Sol. (a) 121 429 (1990)
[32] B. C. Grabmaier and F. Otto, J. Crystal Growth 79 682 (1986)
[33] A. P. Wilkinson and A. K. Cheetham, J. Appl. Phys. 74 3080 (1993)
[34] N. Zotov, H. Boysen, F. Frey, T. Metzger, and E. Born, J. Phys. Chem. Solids 55 145 (1994)
[35] H. Donnerberg, S. M. Tomlinson, S. R. A Catlow and O. F. Schirmer, Phys. Rev. B 40 11909 (1989)
[36] H. Donnerberg, S. M. Tomlinson, S. R. A Catlow and O. F. Schirmer, Phys. Rev. B 44 4877 (1991)
[37] Grabmaier B. C., T. Sota, K. Suzuki, N. Iyi, and S. Kimura, J. Phys.: Condens. Matter 7 3627 (1995)
[38] T. Volk, N. Rubinina, M. Whlecke, J. Opt. Soc. Am B 11 9 1681 (1994)
[39] F. Abdi, M. Aillerie, M. Fontana, T. Volk, Appl. Phys. B 68 795 (1999)
[40] T. Volk, B. Maximov, T. Chernaya, N. Rubinina, M. Whlecke and V. Simonov, Appl. Phys. B72 647 (2001)
[41] Y. Zhang, Y. H. Xu, M.H. Li and Y. Q. Zhao, Journal of Crystal Growth 233 537 (2001)
[42] T. S. Chernaya, B. A. Maksimov, T. R. Volk, JETP Letters 73 2 103 (2001)
[43] S. Sulyanov, B. Maximov, T. Volk, H. Boysen, Appl. Phys. A 74 S1031 (2002)
[44] T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, Optical Materials 23 229 (2003)
[1]洪勝富、齊正中,物理雙月刊,25卷5期 553 (1998)
[2]張克從、王希敏,非線性光學晶體材料學 第一章, 科學出版社 (1996)
[3]卓崇培,非線性物理學 第三篇,天津科學技術出版社 (1996)
[4] P. C. M. Planken, L. D. Noordam, Physical Review B 45 13 (1992) 7106
[5] A. S. Barker, Jr., and R. Loudon, Phys. Rev. 158 (1967) 433
[6] H. J. Bakker, S. Hunsche, H. Kurz, Physical Review B 50 2 (1994) 914
[7] P. D. Thomas, P. W. Gary, A. N. Keith, H. G. Mark, and P J. Hans, Physical Review B 50 8996 (1994)
[8] Q. Tiequn, T. Torsten, and M. Max, Optics Communications 119 149 (1995)
[9] H. J. Bakker, S. Hunsche, and H. Kurz, Review of Modern Physics, 70 523 (1998)
[10] P. C. M. Planken, L. D. Noordam, J. T. M. Kennis, and A. Lagendijk, Physical Review B 45 7016 (1992)
[11] O. Albert, M. Duijser, J. C. Loulergue, J. Opt. Soc. Am. B 13 1 (1996) 29
[12] O. Albert, C. A. Gautier, J. C. Loulergue, Solid State Communications 107 10 (1998) 567
[13] J. C. Loulergue, J. Etchepare, Physical Review B 52 21 (1995) 15160
[14] Y. Repelin, E. Husson, F. Bennani, J. Phys. Chem. Solids 60 (1999) 819
[15] V. Caciuc, A. V. Postnikov, G. Borstel, Physical Review B 61 13 (2000) 8806
[16] J. C. Loulergue, J. Etchepare, Physical Review B 52 21 15160 (1995)
[17] C.A. Gautier, M. Mĕrian, J. Etchepare, J. Phys.: Condens. Matter 12 7175 (2000)
[18] D. H. Auston, N. Nuss, IEEE J. Quantum Electron 24 184 (1988)
[19] K. P. Cheung, D. H. Auston, Phys. Rev. Lett. 55 2152 (1985)
[20] G. G. Cho, W. Ktt, H. Kurz, Phys. Rev. Lett 65 764 (1990)
[21] Tiequn Qiu, and Max Maier, Phys. Rev. B 56 10 R5717 (1997)
[22] Seiji Kojima, Naoki Tsumura, and Hideaki Kitahara, J. J. Appl. Phys. 41 7033 (2002)
[23] C. C. Lee, C. T. Chia, Y. M. Chang, and M. L. Sun, J. J. Appl. Phys. (2004) 28-E-4
[1] D. E.Sayers, E.A.Sterm and F.W.Lytle, Phys. Rev. Lett. 27, 1024 (1971)
[2] D. C. Koningsberger, and R. Prins., X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, 53-83 (1988).
[3] B. K. Teo, EXAFS: Basic Principles and Data Analysis, 21-101 (1986).
[4]王其武、劉文漢,X射線吸收精細結構及其應用,科學出版社 (1994)
[5] Matthew Newville , AUTOBK , University of Washington (1995)
[6] http://millenia.cars.aps.anl.gov/cgi-bin/atoms/atoms.cgi
[7] B. Ravel , and J.J. Rehr , FEFF8.20 , University of Washington (2002)
[8] Matthew Newville , FEFFIT , University of Chicage (1998)
[9] B. K. Teo, EXAFS:Basic Principles and Data Analysis, (Springer-Verlag, 1986)
[10] J.J.Rehr, J.Mustre de Leon, S.I.Zabinsky, R.C.Albers, J.Am.Chem.Soc, 113 5135 (1991)
[11] http://saturn.nchc.gov.tw:9091/cds/index.html
[12] C. Zaldo, C. Prieto, H. Dexpert, and P. Fesslert, J. Phys: Condens. Matter 3 4135 (1991)
[13] C. Prieto, C. Zaldo, P. Fessler, H. Dexpert, Phys. Rev. B 43 2594 (1991)
[14] C. Prieto, Optical Materials 12 135 (1999)
[15] Boon Keng Teo, and P. A. Lee, J.Am.Chem.Soc 79 2815 (1979)
[16] C. Prieto and C. Zaldo, J. Phys: Condens. Matter 6 L677 (1994)
[17] Wang Qi-wu and J. Wong, Proc. Int. Conf. ”EXAFS and Near Edge Structure III”, 16-20 July, pg 202, Ed. K. O. Hodgson, B. Hedman and J. E. Penner-Ha, Springer Verlag, Berlin, 1984
[18] F. Decremps, F. Datchi, A. M. Saitta, and A. Polian, Phys. Rev. B 68 10401 (2003)
[19] R. S. Weis and T. K. Gaylord, Appl. Phys. A 7 191 (1985)
[20] S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, J. Phys. Chem. Solids 27 1019 (1966)
[21] N. Iyi, K. Kitamura, Y. Yajima, and S. Kimura, J. Solid State Chem. 118 148 (1995)
[22] H. Donnerberg, J. Solid State Chem. 123 208 (1996)
[23] X. H. Zhen, L. C. Zhao, Y. H. Xu, Appl. Phys. B 76 655 (2003)
[24] Chih Ta Chia, May Lan Sun, Ming Li Hu, Jpn. J. Appl. Phys. Vol. 42 6234 (2003)
[25] T. Volk, B. Maximov, S. Sulyanov, and N. Rubinina, Optical Materials 23 229 (2003)
[26] C. T. Chia, C. C. Lee, and B. J. Chang ( in preparing)
[1] T. Volk, B. Maximov, T. Cdernaya, and N. Rubinina, Appl. Phys. B 72 647 (2001)
[2] S. Sulyanov, B. Maximov, T. Volk, and H. Boysen, Appl. Phys. A 74 s1031 (2002)
[3] T. Volk, B. Maximov, S. Sulyanov, and N. Rubinina, Optical Materials 23 229 (2003)
[4] Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, J. Crystal Growth 233 537 (2001)
[5] F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Whlecke, Appl. Phys. B 68 (1999) 795.
[6] 鍾維烈,鐵電體物理學,第五章,科學出版社 (1996)
[7] V. Gopalan and M. C. Gupta, Internal fields in lithium tantalate crystals, Proceeding SPIE 2700 (1996) 28.
[8] L. H. Peng, Y. C. Fang, and Y. C. Lin, Appl. Phys. Lett. 78 4 (2001)
[9] J. J. Zayhowski, Opt. Mater. 11 255 (1999)
[10] Yunlin Chen, Cibo Lou, and Jingjun Xu, J. Appl. Phys. 94 5 (2003)
[11] L. H. Peng, Y. C. Zhang, and Y. C. Lin, Appl. Phys. Lett. 78, 4 (2001)
[12] V. Gopalan, T. E. Mitchell, Y. Furukawa and K. Kitamura, Appl. Phys. Lett. 72 1981 (1998)
[13] Y. Chen, J. Xu, Y. Kong, S. Chen, G. Zhang and J. Wen, Appl. Phys. Lett. 81 700 (2002).
[14] K. Kitamura, Y. Furukawa, K. Niwa, V. Gopalan and T. E. Mitchell, Appl. Phys. Lett. 73 3073 (1998).
[15] Y. L. Chen, J. J. Xu, X. J. Chen, and Y. F. Kong, Opt. Commun 188 359 (2001)
[16] S. Kim, V. Gopalan, and A. Gruverman, Appl. Phys. Lett. 80, 2740 (2002).
[17] V. Gopalan and M. C. Gupta, J. Appl. Phys. 80, 6096 (1996)
[18] Y. Chen, C. Lou, J. Xu, S. Chen, Y. Kong, G. Zhang and J. Wen, J. Appl. Phys. 94, 3350 (2003)
[19] H.M. O’Bryan and P.K. Gallagher et al., Am. Ceram. Soc. 68 493(1985)
[20] C. T. Chia, C. C. Lee, and M. L. Hu, submitted to Appl. Phys. Lett.