簡易檢索 / 詳目顯示

研究生: 張憲裕
Hsion-Yu Chang
論文名稱: 絕緣矽上多凹式微環形共振光緩衝器之研究
Study of Multi-concaves Optical Resonant Microring Buffer Based on SOI
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 160
中文關鍵詞: 絕緣矽多凹式光緩衝器
英文關鍵詞: SOI, Multi-concaves, Buffer
論文種類: 學術論文
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為將光學微環形被動式元件改良並應用在光緩衝器其為未來發展之趨勢。我們將光學波導結合改良式多凹微環形共振腔並建置在SOI矽晶片上,此研究與模擬利用有效差分時域演算法進行模擬與設計。利用多凹式微環形光緩衝器的幾何結構所創造出的折角和較長的路徑,能夠有效的將光延遲在其緩衝器中並且應用於通訊上。我們設計三種不同形狀的光緩衝器分別為:酢醬草形、幸運草形和拼圖形。這些結構都是以傳統的環形共振腔為基礎並加以改良。除此之外,光的延遲時間是我們研究的一大重點,故在每一章中,我們模擬新型態模型與傳統環形模型並比較其光緩衝時間。

    In this thesis, we improve optical micro-ring passive device and apply the device passive device to the optical buffer has become the future trend. We combine the optical waveguide with the multi-concaves optical resonant micro-ring cavity based on silicon-on-insulator (SOI), also integrated multi-concaves structure and the simulation is based on the well-known Finite-difference Time Domain (FDTD) technique. To use the structure of multi-concaves optical resonant micro-ring buffer which has the turns and the longer light path can delay the time availably and apply to the communication. We design the three kinds of the optical buffer: shamrock, four-leaved clover and jigsaw. The structures are based on classic micro-ring cavity. The buffer time is our major research. Therefore, we simulate the models and compare the buffer time of new model with classic model

    Chinese Abstract………………………………………i English Abstract………………………………………ii Acknowledgment…………………………………………iii Contents …………………………………………………iv List of Figures ………………………………………ix List of Tables ………………………………………xvii Chapter 1 Introduction ……………………………………1 1-1 Introduction of the Silicon-on-Insulator (SOI) Material Characteristics……………………………………………………2 1-2 Introduction of Micro-ring Resonator Devices by SOI Substrate Material…………………………………………………4 1-3 Introduction of Micro-ring Buffer Devices by SOI Substrate Material…………………………………………………5 1-4 Introduction of Multi-concaves Optical Resonant Micro-ring Buffer by SOI Substrate Material………………………………………6 Chapter 2 Design and Simulation of Shamrock Optical Resonant Micro-ring Buffer Based on SOI Waveguide…………………………………………8 2-1 Introduction of Shamrock Optical Resonant Micro-ring Buffer by SOI Substrate Material…………………………………………9 2-2 Background Theorem of Beam Propagation Method (BPM), Finite Difference Time Domain (FDTD) Method, Coupling Mode Theorem and Scattering Matrix of Micro-ring Resonator………………………………………………………10 2-2-1 Mathematical Formulation of Beam Propagation Method……11 2-2-2 Mathematical Formulation of Finite Difference Time Domain (FDTD) Method……………………………………………13 2-2-3 Scattering Matrix of Micro-ring Resonator…………………16 2-3 Design and Simulation of Shamrock Micro-ring Resonator Based on SOI……………………………………………………………22 2-3-1 Design and Simulation of Shamrock Micro-ring Resonator Based on SOI………………………………………………23 2-3-1-1 Design and Simulation of Waveguide Size Based on SOI………………………………………………23 2-3-1-2 Design and Simulation of Shamrock Micro-ring Resonator Based on SOI…………………………24 2-3-2 Simulation of Buffer Time by Shamrock Optical Resonant Micro-ring Buffer Based on SOI……………………………26 2-3-3 To Compare Simulation of Classic Optical Resonant Micro-ring Buffer with Shamrock Optical Resonant Micro-ring Buffer Based on SOI………………………………………………27 2-4 Discussion and Summary…………………………………………30 Chapter 3 Design and Simulation of Four-leaved Clover Optical Resonant Micro-ring Buffer Based on SOI Waveguide…………………………………43 3-1 Introduction of Four-leaved Clover Optical Resonant Micro-ring Buffer by SOI Substrate Material………………………………44 3-2 Design and Simulation of Four-leaved Clover Micro-ring Resonator Based on SOI……………………………………………………45 3-2-1 Design and Simulation of Four-leaved Clover Micro-ring Resonator Based on SOI…………………………………45 3-2-2 Simulation of Buffer Times by Four-leaved Clover Optical Resonant Micro-ring Buffer Based on SOI…………………47 3-2-3 To Compare Simulation of Classic Optical Resonant Micro-ring Buffer with Four-leaved Clover Optical Resonant Micro-ring Buffer Based on SOI………………………………………49 3-3 Design and Simulation of Four-leaved Clover Optical Resonant Micro-ring Buffer by Different Leaves Ratio Based on SOI…51 3-3-1 Design and Simulation of Four-leaved Clover Micro-ring Resonator Based by Different Leaves Ratio on SOI………52 3-3-1-1 Design and Simulation of Four-leaved Clover Micro-ring Resonator by 1:2 Leaves Ratio Based on SOI………………………………………………53 3-3-1-2 Design and Simulation of Four-leaved Clover Micro-ring Resonator by 2:1 Leaves Ratio Based on SOI ………………………………………………54 3-3-2 Simulation of Buffer Time of Four-leaved Clover Micro-ring Optical Resonant Buffer by Different Leaves Ratio Based on SOI…………………………………………………………56 3-3-2-1 Simulation Result of Four-leaved Clover Micro-ring Optical Resonant Buffer by 1:2 Leaves Ratio Based on SOI……………………………………………57 3-3-2-2 Simulation Result of Four-leaved Clover Micro-ring vii Optical Resonant Buffer by 2:1 Leaves Ratio Based on SOI……………………………………………58 3-3-3 To Compare Simulation of Classic Optical Resonator Micro-ring Buffer with Four-leaved Clover Optical Resonator Micro-ring Buffer by Different Leaves Ratio Based on SOI…………59 3-4 Discussion and Summary………………………………………62 Chapter 4 Design and Simulation of Jigsaw Optical Resonant Micro-ring Buffer Based on SOI Waveguide……………………………………85 4-1 Introduction of Jigsaw Optical Resonant Micro-ring Buffer Devices by SOI Substrate Material……………………………………86 4-2 Design and Simulation of Jigsaw Micro-ring Resonator Based on SOI……………………………………………………………87 4-2-1 Design and Simulation of Jigsaw Micro-ring Resonator Based on SOI……………………………………………………87 4-2-2 Simulation of Buffer Time of Jigsaw Micro-ring Resonant Optical Buffer Based on SOI………………………………89 4-2-3 To Compare Simulation of Classic Optical Resonant Micro-ring Buffer with Jigsaw Optical Resonant Micro-ring Buffer Based on SOI……………………………………………………90 4-3 Design and Simulation of Jigsaw Optical Resonant Micro-ring Buffer by Different leaves Ratio Based on SOI………………………93 4-3-1 Design and Simulation of Jigsaw Micro-ring Resonator by Different Leaves Ratio Based on SOI……………………94 4-3-1-1 Design and Simulation of Jigsaw Micro-ring Resonator by 1:2 leaves Ratio Based on SOI……94 4-3-1-2 Design and Simulation of Jigsaw Micro-ring Resonator by 2:1 leaves Ratio Based on SOI……96 4-3-2 Simulation of Buffer Time of Jigsaw Micro-ring Optical Resonant Buffer by Different Leaves Ratio Based on SOI...97 4-3-2-1 Simulation Result of Jigsaw Optical Resonant Micro-ring Buffer by 1:2 Leaves Ratio Based on SOI………………………………………………98 4-3-2-2 Simulation Result of Jigsaw Optical Resonant Micro-ring Buffer by 2:1 Leaves Ratio Based on SOI……………………………………………….99 4-3-3 To Compare Simulation of Classic Optical Resonator Micro-ring Buffer with Jigsaw Optical Resonator Micro-ring Buffer by Different Leaves Ratio Based on SOI……………………100 4-4 Discussion and Summary……………………………103 Chapter 5 Conclusions……………………………………128 Reference…………………………………………………………130 Publication Lists…………………………………………………140

    [1]. Semiconductor Industry Association. International Technology Roadmap for Semiconductors (ITRS), Interconnect Chapter (Semiconductor Industry Association, 2005). Available at http://www.itrs.net.
    [2]. Luijten, R., Minkenberg, C., Hemenway, R., Sauer, M. & Grzybowski, R. “Viable opt-electronic HPC interconnect fabrics”. Proceedings of the ACM/IEEE SC05 Supercomputer 2005 Conference,8–16 (2005).
    [3]. Hau, L. V. et al. “Light speed reduction to 17 meters per second in an ultracold atomic gas”. Nature 397, 594–598 (1999).
    [4]. Bajcsy, M., Zibrov, A. S. & Lukin, M. “D. Stationary pulses of light in an atomic medium”. Nature 426, 638–641 (2003).
    [5]. Okawachi, Y. et al. “Tunable all-optical delays via Brillouin slow light in an optical fiber”. Phys. Rev. Lett. 94, 153902 (2005).
    [6]. Boyd, R. W., Gauthier, D. J., Gaeta, A. L. & Willner, A. E. “Maximum time delay achievable on propagation through a slow-light medium”. Phys. Rev. A 71, 023801 (2005).
    [7]. Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. “Slow-light optical buffers: capabilities and fundamental limitations”. J. Lightwave Technol. 23, 4046–4066 (2005).
    [8]. Khurgin, J. B. “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis”. J. Opt. Soc. Am. B 22,1062–1074 (2005).
    [9]. J. V. Hryniewicz, Y. J. Chen, S. H. Hsu, C.-H. D. Lee, and G. A. Porkolab, “Ultrahigh vacuum chemically assisted ion beam etching system with a three grid ion source,” J. Vacuum Sci. Technol. A, vol. 15, pp. 616–621, 1997.
    [10]. M. E. McNie, J. S. Burdess, A. J. Harris, J. Hedley, and M.Young, “High aspect ratio ring gyroscope fabricated in silicon on insulator (SOI) material,” in Proc. International Conference on Solid State Sensors and Actuators, Sendai, Japan, Jun. 7–10, 1999.
    [11]. J. Niehusmann, A. Vörckel, and P. H. Bolivar, “Ultrahigh quality factor silicon-on-insulator micro-ring resonator,” Optics Letters, vol. 29, no. 24 ,Dec. 15, 2004.
    [12]. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron, vol. 27, pp. 1971–1974, 1991.
    [13]. C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo optical micro-modulator with 700-kHz –3-dB bandwidth,” IEEE Photonics Technology Letters, vol. 7, no. 4, pp. 363–365, 1995.
    [14]. M. Misono, N. Henmi, T. Hosoi, and M. Fujiwara, “High-speed wavelength switching and stabilization of an acoustooptic tunable filter for WDM network in broadcasting stations,” IEEE Photonics Technology, vol. 8, no. 4, pp. 572–574, 1996.
    [15]. T. Sadagopan, S. June Choi, K. Djordjev, and P. D. Dapkus, “Carrierinduced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett.,vol. 17, no. 2, pp. 414–416, Feb. 2005.
    [16]. R. A. Soref, J. Schmidtchen and K. Petermann, “Large single-mode rib waveguides in Ge-Si and Si-on- SiO2,” IEEE J. Quantum Electron., vol. 27, no. 8, pp. 1971-1974, Aug. 1991.
    [17]. J. C. C. Fan, M. W. Geis, and B. Y. Tsaur, “Lateral epitaxy by seeded solidification for growth of single-crystal Si films on insulators,” Appl. Phys. Lett., vol. 38, no. 5, pp. 365-367, 1981.
    [18]. Y. Omura, S. Nakashima, and K. Izumi, “Investigation on high-speed performance of 0. l-fim-gate ultrathin-film CMOS/SIMOX,” IEICE Trans. Electron., vol. E15-C, pp. 1491-1497, 1992.
    [19]. H. G. Bach, A. Umbach, S. van Waasen, R. M. Bertenburg, and G. Unterborsch, “Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design, fabrication, and system application,” IEEE Journal of Selected Topics in Quantum Electronic, vol. 2, no. 2, pp. 418–423, 1996.
    [20]. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiplering- resonator filters for optical systems,” IEEE Photon. Technol. Lett., vol. 7, pp. 1447–1449, Dec. 1995.
    [21]. S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic, double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol., vol. 13, pp. 1766–1771, Aug. 1995.
    [22]. S. C. Hagness, D. Rafizadeh, S. T. Ho, and T. Taflove, “FDTD microcavity simulations: Nanoscale waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators,” J. Lightwave Technol., vol. 15, pp. 2154–2165, Nov. 1997.
    [23]. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis, and P. T. Ho, “Wavelength conversion in GaAs micro-ring resonators,” Opt. Lett., vol. 25, pp. 554–556, Apr. 2000.
    [24]. D. G. Rabus and M. Hamacher, “MMI-coupled ring resonators in GaInAsP-InP,” IEEE Photon. Technol. Lett., vol. 13, no. 8, pp. 812–814, Aug. 2001.
    [25]. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si-SiO micro-ring resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10, no. 4, pp. 549–551, Apr. 1998.
    [26]. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator micro-ring resonator,” Opt. Lett., vol. 29, no. 24, pp. 2861–2863, 2004.
    [27]. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, “High-Q optical resonators in silicon-on-insulator-based slot waveguides,” Appl. Phys. Lett., vol. 86, no. 9, p. 081 101, 2004.
    [28]. T. Sadagopan, S. J. Choi, S. J. Choi, K. Djordjev, and P. D. Dapkus, “Carrier- induced refractive index changes in InP-based circular microresonators for low-voltage high-speed modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 2, pp. 414–416, Feb. 2005.
    [29]. Luijten, R., Minkenberg, C., Hemenway, R., Sauer, M. & Grzybowski, R. “Viable opt-electronic HPC interconnect fabrics”. Proceedings of the ACM/IEEE SC05 Supercomputer 2005 Conference,8–16 (2005).
    [30]. Hau, L. V. et al. “Light speed reduction to 17 meters per second in an ultracold atomic gas”. Nature 397, 594–598 (1999).
    [31]. Bajcsy, M., Zibrov, A. S. & Lukin, M. D. “Stationary pulses of light in an atomic medium”. Nature 426, 638–641 (2003).
    [32]. Okawachi, Y. et al. “Tunable all-optical delays via Brillouin slow light in an optical fiber”. Phys. Rev. Lett. 94, 153902 (2005).
    [33]. Boyd, R. W., Gauthier, D. J., Gaeta, A. L. & Willner, A. E. “Maximum time delay achievable on propagation through a slow-light medium”. Phys. Rev. A 71, 023801 (2005).
    [34]. Tucker, R. S., Ku, P.-C. & Chang-Hasnain, C. J. “Slow-light optical buffers: capabilities and fundamental limitations”. J. Lightwave Technol. 23, 4046–4066 (2005).
    [35]. Khurgin, J. B. “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis”. J. Opt. Soc. Am. B 22,1062–1074 (2005).
    [36]. Rasras, M. S. et al. Integrated resonance-enhanced variable optical delay lines. IEEE Photon. Technol. Lett. 17, 834–836 (2005).
    [37]. Vlasov, Y. A., O’Boyle, M., Hamann, H. F. & McNab, S. J. “Active control of slow light on a chip with photonic crystal waveguides”. Nature 438, 65–69 (2005).
    [38]. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. “Coupled-resonator optical waveguide: A proposal and analysis”. Opt. Lett. 24, 711–713 (1999).
    [39]. Heebner, J. E., Boyd, R. W. & Park, Q.” Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide”. Phys. Rev. E 65, 036619 (2002).
    [40]. Scalora, M., Flynn, R. J., Reinhardt, S. B. & Fork, R. L. “Ultrashort pulse propagation at the photonic band-edge — large tunable group delay with minimal distortion and loss”. Phys. Rev. E54, R1078 (1996).
    [41]. Yanik, M. F. & Fan, S.” Stopping light all-optically”. Phys. Rev. Lett. 92, 083901 (2004).
    [42]. Maleki, L., Matsko, A. B., Savchenkov, A. A. & Ilchenko, V. S. “Tunable delay line with interacting whispering-gallery-mode resonators”. Opt. Lett. 29, 626–628 (2004).
    [43]. Lenz, G., Eggleton, B. J., Madsen, C. K. & Slusher, R. E. “Optical delay lines based on optical filters’. IEEE J. Quantum Electron. 37, 525–532 (2001).
    [44]. Xu, Q. et al. “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency”. Phys. Rev. Lett. 96, 123901 (2006).
    [45]. Little, B. E. et al. “Ultra-compact Si/SiO2 microring resonator optical channel dropping filters. IEEE Photon”. Technol. Lett. 10, 549–551 (1998).
    [46]. Madsen, C. K. & Lenz, G. “Optical all-pass filters for phase response design with applications for dispersion compensation”. IEEE Photon. Technol. Lett. 10, 994–996 (1998).
    [47]. Little, B. E. et al. “Very high-order micro-ring resonator filters for WDM applications. IEEE Photon”. Technol. Lett. 16, 2263–2265 (2004).
    [48]. Barwicz T. et al. “Microring-resonator-based add–drop filters in SiN: fabrication and analysis”.Opt. Express 12, 1437–1442 (2004).
    [49]. Barwicz, T. et al. “Fabrication of add–drop filters based on frequency-matched micro-ring resonators”. J. Lightwave Technol. 24, 2207–2218 (2006).
    [50]. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. “Micrometre-scale silicon electro-optic modulator”. Nature 435, 325–327 (2005).
    [51]. Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. “High-Q ring resonators in thin silicon-insulator”. Appl. Phys. Lett. 85, 3346–3348 (2004).
    [52]. Xia, F., Sekaric, L. & Vlasov, Y. A. “Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators”. Opt. Express 14, 3872–3886 (2006).
    [53]. Poon, J. K. S., Zhu, L., DeRose, G. A. & Yariv, A. “Polymer micro-ring coupled resonator optical waveguides”. IEEE J. Lightwave Technol. 24, 1843–1849 (2006).
    [54]. Poon, J. K. S., Zhu, L., DeRose, G. A. & Yariv, A. “Transmission and group delay of micro-ring coupled-resonator optical waveguides”. Opt. Lett. 31, 456–458 (2006).
    [55]. Poon, J. K. S., Scheuer, J., Xu, Y. & Yariv, A. “Designing coupled-resonator optical waveguide delay lines”. J. Opt. Soc. Am. B 21, 1665–1673 (2004).
    [56]. Xia, F., Sekaric, L., O’Boyle, M. & Vlasov, Y. A. “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires”. Appl. Phys. Lett. 89, 041122 (2006).
    [57]. Pozzi, F. et al. “Integrated high order filters in AlGaAs waveguides with up to eight side-coupled racetrack micro resonators”. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, paper CWK2 (2006).
    [58]. Dumon, P. et al. “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography”. IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [59]. Thomas J. Watson Research Centre, Yorktown Heights,” Ultra-compact optical buffers on a silicon chip” IBM photon com . (2006).
    [60]. J. V. Roey, J. V. D. Donk, and D. Lagasse, “Beam propagation: analysis and assessment,” Journal of the Optical Society of America, vol. 71, pp. 803–810, 1981.
    [61]. Y. C. Chao. “Optics measurement resolution and BPM errors,” Particle Accelerator Conference, 1997. Proceedings of the 1997, vol. 2, pp. 2125–2127, 1998.
    [62]. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE Journal of Quantum Electronics, vol. 26, no. 8, pp. 1335–1339, 1990.
    [63]. Y. Chung and N. Dagli, “Modeing of guided-wave optical components with efficient finite-difference beam propagation methods,” IEEE Antennas and Propagation Society International Symposium, , July, vol. 1, pp. 248–251, 1992.
    [64]. D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. and Quant. Elec., vol. 26, pp. S185-S197, 1994.
    [65]. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Selected Topics in Quantum Electronics, vol. 6, pp.150, 2000.
    [66]. K. S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE J. Quantum Electron., vol.14, pp. 302-307, April 1966.
    [67]. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech.J., vol. 48, pp. 2103–2132, Sept. 1969.
    [68]. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, “Directional light output from photonic-wire microcavity semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 968–970, Aug. 1996
    [69]. S. Chu, and S. K. Chaudhuri, ”A Finite-Difference Time-Domain method for the design and analysis of guided-wave optical structures,” J. Lightwave Technol, vol. 7, pp. 2033-2038, Dec. 1989.
    [70]. K. Okamoto. Fundamentals of Optical Waveguides. Academic Press, 2000.
    [71]. A. B. Katrich, “The end of evanescent waves in free space,” CAOL 2005, pp. 172-7 Sep. 2005.
    [72]. H. Rao, R. Scarmozzino, and R.M. Osgood, Jr., “A bidirectional beam propagation method for multiple dielectric interfaces,” Photon. Technol. Lett., vol. 11, pp. 830-832, 1999.
    [73]. V. Van, P. P. Absil, J. V. Hryniewicz, and P. T. Ho. “Propagation loss in single-mode GaAs-AlGaAs micro-ring resonators: measurement and model,” IEEE J. Lightwave Technology, vol. 19(11) pp. 1734-1739, 2001.
    [74]. L. F. Stokes, M. Chodorow, and Shaw H. J. “All single mode fiber resonator,” Optics Letters, vol. 7(6) pp. 288-290, June 1982
    [75].T. Tamir (Ed.). Integrated Optics (Second Corrected and Updated Edition). Springer-Verlag, Ger-many, 1982.
    [76]. Seunghyun Kim, Gregory P. Nordin, Jianhua Jiang, Jingbo Cai. “Micro-genetic algorithm design of hybrid conventional waveguide and photonic crystal structures”. SPIE conference, (2004).

    無法下載圖示 本全文未授權公開
    QR CODE