研究生: |
高慈敏 Kao, Tzu-Min |
---|---|
論文名稱: |
新型冠狀病毒(COVID-19)流行初期每日確診人數趨勢型態及相關因子分析-世界各國開放資料研究 Trend Pattern and Related Factors Analysis of COVID-19 Daily New Cases in the Early Stage of Pandemic -A Worldwide Open Data Study |
指導教授: |
李子奇
Lee, Charles tzu-Chi |
口試委員: |
林志榮
Lin, Jr-Rung 謝宗成 Hsieh, Tsung-Cheng 李子奇 Lee, Charles Tzu-Chi |
口試日期: | 2022/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
健康促進與衛生教育學系 Department of Health Promotion and Health Education |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 新型冠狀病毒 、每日新增確診人數 、趨勢型態 、時間序列階層群集分析法 、邏輯斯迴歸 |
英文關鍵詞: | COVID-19, daily new cases, trend pattern, time-series hierarchical clustering, logistic regression |
研究方法: | 次級資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202200809 |
論文種類: | 學術論文 |
相關次數: | 點閱:251 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:
新型冠狀病毒(COVID-19)在2019年12月於中國武漢市發現且疫情迅速擴散至全球,隨著各國確診及死亡人數與日俱增,世界衛生組織於2020年3月宣布其為大流行疾病。世界各國COVID-19大流行初期之第一波疫情皆以單一或是數個小型零星地區開始爆發,各國依照其文化、經濟及地理位置等不同背景條件,制定不同的防疫政策以防堵疫情持續蔓延。本研究探討世界各國COVID-19流行初期的疫情趨勢型態及其相關背景因素。
研究方法:
本研究在時間趨勢型態分析部份,結合長期追蹤設計與時間序列設計,以151個國家為研究對象重複測量各國「每日新增確診人數7天移動平均值」(以下簡稱MA7),並對每一個研究國家觀察了60或90天的時間序列資料;因此,本研究在時間趨勢型態分析部份結合了以上兩種研究設計的特性為「長期追蹤時間序列研究設計」(Longitudinal time series design)。
有關世界各國COVID-19流行初期MA7時間序列趨勢型態的相關因素分析,將研究的國家依據疫情趨勢型態分類,進行病例對照研究(case-control study)。研究對象以國家為單位,對151個國家開放數據進行分析,如:COVID-19每日新增確診人數、遏制和衛生指數、高齡化、國內生產總值、識字率、人口密度、肥胖盛行率、醫療資源 (醫師密度、病床密度)及地理環境 (島嶼、沿海及內陸)。
統計分析運用時間序列階層群集分析法 (Time-series hierarchical clustering),對世界各國COVID-19流行初期MA7的時間趨勢型態進行分類,並利用邏輯斯迴歸分析探討與此時間趨勢型態分類有相關的背景因素。
結果:
COVID-19流行初期MA7趨勢型態可歸類為「成長型」、「消退型」、「平緩消退型」。邏輯斯迴歸並以逐步迴歸校正顯示,世界各國COVID-19流行初期連續觀察60天的MA7趨勢型態分成2群集之相關因素分析顯示,較低的國內生產總值傾向於「成長型」趨勢型態(校正後勝算比=0.98,95%信賴區間0.96-1.00,p值=0.028);較高的肥胖盛行率傾向於「成長型」趨勢型態 (校正後勝算比=1.09,95%信賴區間1.04-1.14,p值<0.001)。連續觀察60天趨勢型態3群集之多項邏輯斯逐步迴歸模式分析,較高的肥胖盛行率傾向於「成長型」趨勢型態 (校正後勝算比=1.06,95%信賴區間1.01-1.11,p值=0.010)。
結論:
世界各國在地理、經濟、文化、人口、衛生等背景因素的差異下,使得COVID-19每日新增確診人數時間序列趨勢型態有顯著不同,各國防疫政策應參考國家的特性差異來擬定。
Background:
Coronavirus disease 2019 (COVID-19) originated in the city of Wuhan, China in December 2019, and has rapidly widespread across the world. With the fast-growing number of cases and deaths in many countries, the World Health Organization (WHO) declared the COVID-19 outbreak a global pandemic in March 2020. The first wave of the COVID-19 pandemic outbreak starts at single or sporadic locations across each country. Prevention and control of COVID-19 are applied according to different countries' cultural, economic, and geographical characteristics. This study aims to explore each country's trend pattern of daily new cases in the early stage of the COVID-19 pandemic and explore the associated variables with this trend pattern.
Methods:
In the part of time trend pattern analysis, this study combines longitudinal design and time-series design. We included 151 countries as the study subjects; the '7-day moving average of daily new cases' (MA7) in each country was measured repeatedly and observed for 60- or 90-days. Therefore, this study combines the characteristics of the above two research designs as a 'Longitudinal time-series design'.
In the part of exploring associated variables with the trend pattern revealed by country-level MA7 time-series data, a case-control study was conducted. The study subject is country-level and we analyze open data from 151 countries, such as MA7 of COVID-19, containment and health index, aging, Gross Domestic Product (GDP), literacy rate, population density, obesity prevalence, medical resources (physician density, hospital bed density) and geographical environment (islands, coastal and inland).
Time-series cluster analysis used to reveal the trend pattern of study countries by their MA7, and then the logistic regression used to investigate associated variables with this trend pattern.
Results:
In the time-series hierarchical clustering, the trend pattern of MA7 at each country's early stage of the pandemic can be organized into the 'growth type', the 'decline type', and the 'smoothly decline type'. Logistic regression with stepwise selection of 2 clusters trend pattern which observed MA7 for 60 consecutive days in the early stage of the COVID-19 pandemic showed that lower gross domestic product tended to ‘growth type’ (adjusted odds-ratio=0.98, 95% confidence interval 0.96-1.00, p-value=0.028); higher obesity prevalence tended to ‘growth type’ (adjusted odds-ratio=1.09, 95% confidence interval 1.04-1.14, p-value < 0.001). Multinomial logistic regression model analysis of 3 clusters trend pattern observed for 60 consecutive days, higher obesity prevalence tended to ‘growth type’ (adjusted odds-ratio=1.06, 95% confidence interval 1.01-1.11, p-value =0.010).
Conclusions:
Due to the differences in country-level background factors such as geography, economy, culture, population, and health, the time-series trend pattern of COVID-19 daily new cases varied from each other. Prevention and control policies should take countries’ heterogeneous features into account.
Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering–a decade review. Information Systems, 53, 16-38.
Anam, S., & Shar, N. A. (2021). Effect of environmental, economic and health factors on CoVid-19 transmission. Bioinformation, 17(1), 37.
Arroyo-Marioli, F., Bullano, F., Kucinskas, S., & Rondón-Moreno, C. (2021). Tracking R of COVID-19: A new real-time estimation using the Kalman filter. PloS one, 16(1), e0244474.
Arroyo-Marioli, F., Bullano, F., Kucinskas, S., & Rondon-Moreno, C. (2021). Tracking [Formula: see text] of COVID-19: A new real-time estimation using the Kalman filter. PloS one, 16(1), e0244474. doi: 10.1371/journal.pone.0244474
Baser, O. (2021). Population density index and its use for distribution of Covid-19: A case study using Turkish data. Health Policy, 125(2), 148-154.
Bernheim, A., Mei, X., Huang, M., Yang, Y., Fayad, Z. A., Zhang, N., . . . Li, K. (2020). Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology, 200463.
Bontempi, E., & Coccia, M. (2021). International trade as critical parameter of COVID-19 spread that outclasses demographic, economic, environmental, and pollution factors. Environmental Research, 201, 111514.
Centers for Disease Control and Prevention. (2020). Coronavirus Disease 2019 (COVID-19): steps to prevent illness. Retrieved 3/17, 2020, from https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html
Centers for Diseasse Control and Prevention. (2021a). Interim Guidance for Antigen Testing for SARS-CoV-2. Retrieved 12/1, 2021, from https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html
Centers for Diseasse Control and Prevention. (2021b). Scientific Brief: SARS-CoV-2 Transmission. Retrieved 5/7, 2021, from https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html#print
Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., . . . Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The lancet, 395(10223), 514-523. doi: 10.1016/s0140-6736(20)30154-9
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set. Journal of statistical software, 61, 1-36.
Chen, H.-Y. (2022). Factors Associated with COVID-19 Case Rate and Mortality in the Early Stage of Pandemic- A Global Spatial Analysis. (Master), National Taiwan Normal University, Taipei.
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature microbiology, 5(4), 536.
Courtemanche, C., Garuccio, J., Le, A., Pinkston, J., & Yelowitz, A. (2020). Strong Social Distancing Measures In The United States Reduced The COVID-19 Growth Rate: Study evaluates the impact of social distancing measures on the growth rate of confirmed COVID-19 cases across the United States. Health Affairs, 39(7), 1237-1246.
Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet infectious diseases, 20(5), 533-534. doi: 10.1016/s1473-3099(20)30120-1
Elena, S. F., & Sanjuán, R. (2005). Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. Journal of virology, 79(18), 11555-11558.
European Centre for Disease Prevention and Control. (2020). Infographic: Non-pharmaceutical measures. Retrieved 9/24, 2020, from https://www.ecdc.europa.eu/en/publications-data/infographic-non-pharmaceutical-measures
Federal Ministry of Health, G. (2020). Daily updates on the coronavirus: is wearing a surgical mask, as protection against acute respiratory infections, useful for members of the general public? Retrieved 3/5, 2020, from https://www.bundesgesundheitsministerium.de/en/press/2020/coronavirus.html
Feng, S., Shen, C., Xia, N., Song, W., Fan, M., & Cowling, B. J. (2020). Rational use of face masks in the COVID-19 pandemic. The Lancet Respiratory Medicine, 8(5), 434-436.
Gangemi, S., Billeci, L., & Tonacci, A. (2020). Rich at risk: socio-economic drivers of COVID-19 pandemic spread. Clinical and Molecular Allergy, 18(1), 1-3.
Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., . . . Hui, D. S. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720.
Hale, T., Angrist, N., Kira, B., Petherick, A., Phillips, T., & Webster, S. (2020). Variation in government responses to COVID-19.
Hale, T., Petherick, A., Phillips, T., & Webster, S. (2020). Variation in government responses to COVID-19. Blavatnik School of Government Working paper: BSG-WP-2020/032.
Hellewell, J., Abbott, S., Gimma, A., Bosse, N. I., Jarvis, C. I., Russell, T. W., . . . Sun, F. (2020). Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 8(4), e488-e496.
Hossain, M. P., Junus, A., Zhu, X., Jia, P., Wen, T.-H., Pfeiffer, D., & Yuan, H.-Y. (2020). The effects of border control and quarantine measures on the spread of COVID-19. Epidemics, 32, 100397.
Jain, Y. K., & Bhandare, S. K. (2011). Min max normalization based data perturbation method for privacy protection. International Journal of Computer & Communication Technology, 2(8), 45-50.
Khalatbari-Soltani, S., Cumming, R. C., Delpierre, C., & Kelly-Irving, M. (2020). Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards. J Epidemiol Community Health, 74(8), 620-623.
Kwok, S., Adam, S., Ho, J. H., Iqbal, Z., Turkington, P., Razvi, S., . . . Syed, A. A. (2020). Obesity: a critical risk factor in the COVID‐19 pandemic. Clinical obesity, 10(6), e12403.
Lee, W.-C., & Su, S.-Y. (2022). Epidemic trend of COVID-19 in Taiwan, May to June 2021. Journal of the Formosan Medical Association, 121(3), 580-581.
Lenzen, M., Li, M., Malik, A., Pomponi, F., Sun, Y. Y., Wiedmann, T., . . . Yousefzadeh, M. (2020). Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS One, 15(7), e0235654. doi: 10.1371/journal.pone.0235654
Li, J., Huang, D. Q., Zou, B., Yang, H., Hui, W. Z., Rui, F., . . . Kai, J. C. Y. (2021). Epidemiology of COVID‐19: A systematic review and meta‐analysis of clinical characteristics, risk factors, and outcomes. Journal of medical virology, 93(3), 1449-1458.
Li, M., Zhang, Z., Cao, W., Liu, Y., Du, B., Chen, C., . . . Chen, C. (2021). Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach. Science of The Total Environment, 764, 142810.
Liu, C. M., Lee, C. T. C., Chou, S.-M., Ko, H.-Y., Wang, J.-H., Chih, Y.-C., & Chang, C.-C. (2021). Strategies for Supplying Face Masks to the Population of Taiwan During the COVID-19 Pandemic. Available at SSRN 3716892.
Lu, H., Stratton, C. W., & Tang, Y. W. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virology, 92(4), 401.
Lu, N., Cheng, K.-W., Qamar, N., Huang, K.-C., & Johnson, J. A. (2020). Weathering COVID-19 storm: Successful control measures of five Asian countries. American journal of infection control, 48(7), 851-852.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., . . . Zhu, N. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The lancet, 395(10224), 565-574.
Ministry of HealthLabour and Wellfare, J. (2020). Q & A on coronavirus 2019 (COVID-19): when should I wear a facemask? Retrieved 3/17, 2020, from https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/dengue_fever_qa_00014.html
Pana, T. A., Bhattacharya, S., Gamble, D. T., Pasdar, Z., Szlachetka, W. A., Perdomo-Lampignano, J. A., . . . Myint, P. K. (2021). Country-level determinants of the severity of the first global wave of the COVID-19 pandemic: an ecological study. BMJ open, 11(2), e042034.
Perlman, S. (2020). Another decade, another coronavirus: Mass Medical Soc.
Rochman, N. D., Wolf, Y. I., Faure, G., Mutz, P., Zhang, F., & Koonin, E. V. (2021). Ongoing global and regional adaptive evolution of SARS-CoV-2. Proceedings of the National Academy of Sciences, 118(29).
Roda, A., Cavalera, S., Di Nardo, F., Calabria, D., Rosati, S., Simoni, P., . . . Anfossi, L. (2021). Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosensors and Bioelectronics, 172, 112765.
Service, N. H. (2020). Retrieved 3/5, 2020, from https://www.nhs.uk/conditions/coronavirus-covid-19/common-questions/
Sohrabi, C., Alsafi, Z., O'neill, N., Khan, M., Kerwan, A., Al-Jabir, A., . . . Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International journal of surgery, 76, 71-76.
Taleghani, N., & Taghipour, F. (2021). Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens Bioelectron, 174, 112830. doi: 10.1016/j.bios.2020.112830
Teh, J. K., Bradley, D. A., Chook, J. B., Lai, K. H., Ang, W. T., Teo, K. L., & Peh, S.-C. (2021). Multivariate visualization of the global COVID-19 pandemic: A comparison of 161 countries. PloS one, 16(5), e0252273.
Times, T. N. Y. Coronavirus Variants and Mutations. from https://www.nytimes.com/interactive/ 2021/health/coronavirus variant tracker.html searchResultPosition=1
Whiting, P., Singatullina, N., & Rosser, J. (2015). Computed tomography of the chest: I. Basic principles. Bja Education, 15(6), 299-304.
Wong, C. K., Wong, J. Y., Tang, E. H., Au, C. H., Lau, K. T., & Wai, A. K. (2020). Impact of national containment measures on decelerating the increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: comparative observational study. Journal of medical Internet research, 22(7), e19904.
World Health Organization. (2020a). 2019 Novel Corornavirus ( 2019-nCoV): strategic preparedness and response plan.
World Health Organization. (2020b). Novel Coronavirus ( 2019-nCoV): situation report, 1.
World Health Organization. (2020c, 2021/12/6). Tracking SARS-CoV-2 variants. from https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
World Health Organization. (2020d). WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020.
World Health Organization. (2021). 2019冠状病毒病(COVID-19)的接觸者追蹤臨時指導文件. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/339128/WHO-2019-nCoV-Contact-Tracing-2021.1-chi.pdf.
Wyrobek, J. (2020). The use of decision trees for analysis of the potential determinants for the incidence of deaths and cases of coronavirus (Covid-19) in different countries.
Yang, J., Ma, Z., & Lei, Y. (2021). A meta-analysis of the association between obesity and COVID-19. Epidemiology & Infection, 149.
Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., . . . Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798), 270-273.
外交部領事事務局. (2021). 世界各國因應COVID-19疫情相關措施一覽表. Retrieved 12/17, 2021, from https://www.boca.gov.tw/cp-56-5248-791bd-1.html
陳順宇. (2005). 多變量分析 (Vol. 4). 台灣: 華泰文化.
顏嘉嫺. (2021). COVID-19 疫苗系列專欄: 什麼是 SARS-CoV-2 病毒變異株? 疫情報導, 37(9), 132-135.