研究生: |
曾淯廷 Tzeng, Yu-Ting |
---|---|
論文名稱: |
前十字韌帶重建者單腳著地反彈跳之勁度與不對稱性分析 Analysis of single-leg drop jump stiffness and asymmetry in anterior cruciate ligament reconstructed athletes |
指導教授: |
李恆儒
Lee, Heng-Ju |
口試委員: |
黃昱倫
Huang, Yu-Lun 林建志 Lin, Jian-Zhi 李恆儒 Lee, Heng-Ju |
口試日期: | 2023/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
體育與運動科學系 Department of Physical Education and Sport Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 39 |
中文關鍵詞: | 前十字韌帶傷害 、重回運動場 、勁度 、雙側差異 |
英文關鍵詞: | anterior cruciate ligament injury, return to sport, stiffness, bilateral discrepancy |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301582 |
論文種類: | 學術論文 |
相關次數: | 點閱:102 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的: 探討無重建運動員與前十字韌帶重建之運動員,進行單腳著地反彈跳時,其垂直勁度、髖、膝及踝關節勁度的不對稱性差異,及重建者健患側上述參數的差異。方法: 招募10名無重建與10名前十字韌帶重建的運動員;使用10部Vicon紅外線攝影機 (200Hz),1塊Kistler測力板 (1000Hz);參與者從30公分高的木箱,進行3次成功的單腳著地反彈跳;計算第一次觸地至質心最低點的垂直勁度、髖關節勁度、膝關節勁度與踝關節勁度,再進行對稱性指數的計算;統計方法以獨立樣本t檢定進行組別分析,及皮爾森積差相關分析前十字韌帶重建者垂直勁度,分別與髖、膝及踝關節勁度的關係,再以成對樣本t檢定,分析重建者兩側垂直勁度與髖、膝及踝關節勁度的差異 (α = .05)。結果: 無重建與重建者垂直勁度對稱性指數有達顯著差異 (p = .041),對稱性指數分別為108.2 ± 9.0與99.0 ± 8.6,而兩組人的髖關節勁度對稱性指數也達顯著差異 (p = .011),對稱性指數分別為72.3 ± 21.5與108.5 ± 32.7;重建者垂直勁度對稱性與下肢三關節勁度對稱性皆未達顯著相關 (p < .05);重建者其非重建側與重建側之垂直勁度、三關節勁度皆未達顯著差異 (p < .05)。結論:兩組人中非重建者對稱性較差,非慣用腳有較大的垂直勁度,與較小的髖關節勁度,如此落地模式可能會增加受傷的機率;重建者的三關節都是影響身體落地時受力的關鍵;重建者雙側的各個勁度數值沒有顯著差異,但膝蓋的角度及力矩顯著較小,此特性可能會增加前十字韌帶受傷的風險。
Purpose: This study aims to explore the disparities in vertical, hip, knee, and ankle stiffness between athletes who underwent anterior cruciate ligament reconstruction (ACLR) and those who did not, while also analyzing the variations in these parameters between the unaffected and affected sides of ACLR athletes. Methods: A total of ten non-reconstructed athletes and ten athletes with ACLR were enrolled for this investigation. Kinematic data were captured using ten VICON cameras (200Hz), while kinetic data were acquired through a Kistler force plate (1000Hz). The participants were instructed to execute three successful trials of single-leg drop jumps. The statistical analysis employed independent sample t-tests, Pearson's correlation coefficient, and paired sample t-tests with a significance level of α = .05. Results: A statistically significant distinction (p = 0.041) emerged in the vertical stiffness LSI (limb symmetry index) between the non-reconstructed and ACLR groups. However, within the ACLR group, there was no noteworthy correlation observed between the vertical stiffness LSI and the stiffness of the three joints (p < 0.05). Moreover, no substantial differences were detected in vertical stiffness and joint stiffness across the two sides of the ACLR group (p < 0.05). Conclusion: The non-reconstructed group displayed higher vertical stiffness and decreased hip joint stiffness on their non-dominant side, potentially raising the susceptibility to injury. In the context of ACLR athletes, all three joints—hip, knee, and ankle—hold equal importance during landings. Notably, dissimilarities in knee angle and moment were found between both sides of ACLR group, indicating an elevated load on the reconstructed ACL and an increased likelihood of injury.
Abram, S. G. F., Price, A. J., Judge, A., & Beard, D. J. (2020). Anterior cruciate ligament (ACL) reconstruction and meniscal repair rates have both increased in the past 20 years in England: hospital statistics from 1997 to 2017. British journal of sports medicine, 54(5), 286-291. doi:10.1136/bjsports-2018-100195
Agel, J., Arendt, E. A., & Bershadsky, B. (2005). Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. The American journal of sports medicine, 33(4), 524-530. doi:10.1177/0363546504269937
Argyro Kotsifaki , 2 Sam Van Rossom ,2, Rod Whiteley , 3, Vasileios Korakakis , Roald Bahr , 5 Vasileios Sideris,1, & 2, I. J. (2022). Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. British journal of sports medicine, 56(9), 490–498.
Almonroeder, T. G., Jayawickrema, J., Richardson, C. T., & Mercker, K. L. (2020). THE INFLUENCE OF ATTENTIONAL FOCUS ON LANDING STIFFNESS IN FEMALE ATHLETES: A CROSS-SECTIONAL STUDY. International journal of sports physical therapy, 15(4), 510–518.
Boden, B. P., Torg, J. S., Knowles, S. B., & Hewett, T. E. (2009). Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. The American journal of sports medicine, 37(2), 252–259. doi:10.1177/0363546508328107
Butler, R. J., Crowell, H. P., 3rd, & Davis, I. M. (2003). Lower extremity stiffness: implications for performance and injury. Clinical biomechanics (Bristol, Avon), 18(6), 511–517. doi:10.1016/s0268-0033(03)00071-8
Cowley, H. R., Ford, K. R., Myer, G. D., Kernozek, T. W., & Hewett, T. E. (2006). Differences in neuromuscular strategies between landing and cutting tasks in female basketball and soccer athletes. Journal of athletic training, 41(1), 67–73.
Farley, C. T., Houdijk, H. H., Van Strien, C., & Louie, M. (1998). Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. Journal of applied physiology (Bethesda, Md.:1985), 85(3), 1044–1055.doi:10.1152/jappl.1998.85.3.1044
Farley, C. T., & Morgenroth, D. C. (1999). Leg stiffness primarily depends on ankle stiffness during human hopping. Journal of biomechanics, 32(3), 267–273. doi:10.1016/s0021-9290(98)00170-5
Farley, C. T., Blickhan, R., Saito, J., & Taylor, C. R. (1991). Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Journal of applied physiology (Bethesda,Md.:1985), 71(6), 2127–2132. doi:10.1152/jappl.1991.71.6.2127
Gianotti, S. M., Marshall, S. W., Hume, P. A., & Bunt, L. (2009). Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. Journal of science and medicine in sport, 12(6),622–627.doi:10.1016/j.jsams.2008.07.005
Grindem, H., Snyder-Mackler, L., Moksnes, H., Engebretsen, L., & Risberg, M. A. (2016). Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. British journal of sports medicine, 50(13), 804–808. doi:10.1136/bjsports-2016-096031
Hewett, T. E., Stroupe, A. L., Nance, T. A., & Noyes, F. R. (1996). Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. The American journal of sports medicine, 24(6), 765–773.
Hewett, T. E., Lindenfeld, T. N., Riccobene, J. V., & Noyes, F. R. (1999). The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. The American journal of sports medicine, 27(6), 699–706.
Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr., Colosimo, A. J., McLean, S. G., . . . Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. The American journal of sports medicine, 33(4), 492–501. doi:10.1177/0363546504269591
Hetsroni, I., Wiener, Y., Ben-Sira, D., Iacono, A. D., Marom, N., van Stee, M., & Ayalon, M. (2020). Symmetries in Muscle Torque and Landing Kinematics Are Associated With Maintenance of Sports Participation at 5 to 10 Years After ACL Reconstruction in Young Men. Orthopaedic journal of sports medicine, 8(6), 2325967120923267.
Hogg, J. A., Vanrenterghem, J., Ackerman, T., Nguyen, A. D., Ross, S. E., Schmitz, R. J., & Shultz, S. J. (2020). Temporal kinematic differences throughout single and double-leg forward landings. Journal of biomechanics, 99, 109559. doi:10.1016/j.jbiomech.2019.109559
Ingersoll, C. D., Grindstaff, T. L., Pietrosimone, B. G., & Hart, J. M. (2008). Neuromuscular consequences of anterior cruciate ligament injury. Clinics in sports medicine, 27(3), 383–vii.
King, E., Richter, C., Franklyn-Miller, A., Wadey, R., Moran, R., & Strike, S. (2019). Back to Normal Symmetry? Biomechanical Variables Remain More Asymmetrical Than Normal During Jump and Change-of-Direction Testing 9 Months After Anterior Cruciate Ligament Reconstruction. The American journal of sports medicine, 47(5), 1175–1185.doi:10.1177/0363546519830656
Kyritsis, P., Bahr, R., Landreau, P., Miladi, R., & Witvrouw, E. (2016). Likelihood of ACL graft rupture: not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. British journal of sports medicine, 50(15), 946–951. doi:10.1136/bjsports-2015-095908
Kuenze, C. M., Foot, N., Saliba, S. A., & Hart, J. M. (2015). Drop-Landing Performance and Knee-Extension Strength After Anterior Cruciate Ligament Reconstruction. Journal of athletic training, 50(6), 596–602.
King, E., Richter, C., Franklyn-Miller, A., Daniels, K., Wadey, R., Moran, R., & Strike, S. (2018). Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scandinavian journal of medicine & science in sports, 28(12), 2567–2578. doi:10.1111/sms.13259
Lepley, A. S., & Kuenze, C. M. (2018). Hip and Knee Kinematics and Kinetics During Landing Tasks After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Journal of athletic training, 53(2), 144–159.
Lorimer, A. V., Keogh, J. W. L., & Hume, P. A. (2018). Using stiffness to assess injury risk: comparison of methods for quantifying stiffness and their reliability in triathletes. PeerJ, 6, e5845. doi:10.7717/peerj.5845
Leppänen, M., Pasanen, K., Krosshaug, T., Kannus, P., Vasankari, T., Kujala, U. M., Bahr, R., Perttunen, J., & Parkkari, J. (2017). Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study. Orthopaedic journal of sports medicine, 5(12), 2325967117745487.
Laffaye, G., Bardy, B. G., & Durey, A. (2005). Leg stiffness and expertise in men jumping. Medicine and science in sports and exercise, 37(4), 536–543. doi:10.1249/01.mss.0000158991.17211.13
Maloney, S. J., Richards, J., Nixon, D. G. D., Harvey, L. J., & Fletcher, I. M. (2017). Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries. Scandinavian journal of medicine & science in sports, 27(6), 661–669. doi:10.1111/sms.12682
Morishige, Y., Harato, K., Kobayashi, S., Niki, Y., Matsumoto, M., Nakamura, M., & Nagura, T. (2019). Difference in leg asymmetry between female collegiate athletes and recreational athletes during drop vertical jump. Journal of orthopaedic surgery and research, 14(1), 424.
Pfeiffer SJ, Spang JT, Nissman D, et al. Association of Jump-Landing Biomechanics With Tibiofemoral Articular Cartilage Composition 12 Months After ACL Reconstruction. Orthopaedic Journal of Sports Medicine. 2021;9(7). doi:10.1177/23259671211016424
Pozzi, F., Di Stasi, S., Zeni, J. A., Jr, & Barrios, J. A. (2017). Single-limb drop landing biomechanics in active individuals with and without a history of anterior cruciate ligament reconstruction: A total support analysis. Clinical biomechanics (Bristol, Avon), 43, 28–33.
Paterno, M. V., Ford, K. R., Myer, G. D., Heyl, R., & Hewett, T. E. (2007). Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. official journal of the Canadian Academy of Sport Medicine, 17(4), 258–262. doi:10.1097/JSM.0b013e31804c77ea
Sinsurin, K., Srisangboriboon, S., & Vachalathiti, R. (2017). Side-to-side differences in lower extremity biomechanics during multi-directional jump landing in volleyball athletes. European journal of sport science, 17(6), 699–709.
Sanders, T. L., Maradit Kremers, H., Bryan, A. J., Larson, D. R., Dahm, D. L., Levy, B. A., . . . Krych, A. J. (2016). Incidence of Anterior Cruciate Ligament Tears and Reconstruction: A 21-Year Population-Based Study. The American journal of sports medicine, 44(6), 1502–1507.doi:10.1177/0363546516629944
Taylor, J. B., Ford, K. R., Nguyen, A. D., & Shultz, S. J. (2016). Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane. Orthopaedic journal of sports medicine, 4(6), 2325967116655158. doi:10.1177/2325967116655158
Webster, K. E., Ristanis, S., & Feller, J. A. (2021). A longitudinal investigation of landing biomechanics following anterior cruciate ligament reconstruction. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 50, 36–41.
Wren, T. A. L., Mueske, N. M., Brophy, C. H., Pace, J. L., Katzel, M. J., Edison, B. R., . . . Zaslow, T. L. (2018). Hop Distance Symmetry Does Not Indicate Normal Landing Biomechanics in Adolescent Athletes With Recent Anterior Cruciate Ligament Reconstruction. The Journal of orthopaedic and sports physical therapy, 48(8), 622–629.doi:10.2519/jospt.2018.7817
Watsford, M. L., Murphy, A. J., McLachlan, K. A., Bryant, A. L., Cameron, M. L., Crossley, K. M., & Makdissi, M. (2010). A prospective study of the relationship between lower body stiffness and hamstring injury in professional Australian rules footballers. The American journal of sports medicine, 38(10), 2058–2064. doi:10.1177/0363546510370197
Xergia, S. A., Pappas, E., Zampeli, F., Georgiou, S., & Georgoulis, A. D. (2013). Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. The Journal of orthopaedic and sports physical therapy, 43(3), 154–162. doi:10.2519/jospt.2013.3967
Yeow, C. H., Lee, P. V., & Goh, J. C. (2011). An investigation of lower extremity energy dissipation strategies during single-leg and double-leg landing based on sagittal and frontal plane biomechanics. Human movement science, 30(3), 624–635.
Zouita Ben Moussa, A., Zouita, S., Dziri, C., & Ben Salah, F. Z. (2009). Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Annals of physical and rehabilitation medicine, 52(6), 475–484. doi:10.1016/j.rehab.2009.02.006