簡易檢索 / 詳目顯示

研究生: 吳顥照
Hao-Chao Wu
論文名稱: 間歇跑步測驗評量速度耐力模式之有氧與無氧參數的效度分析
A Validity Analysis of Aerobic and Anaerobic Parameters in Velocity–Endurance Model by Intermittent Running Test
指導教授: 林正常
Lin, Jung-Charng
王順正
Wang, Soun-Cheng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2003
畢業學年度: 91
語文別: 日文
論文頁數: 84
中文關鍵詞: 臨界速度測驗間歇跑步測驗速度耐力模式有氧參數無氧參數
英文關鍵詞: critical velocity test, intermittent running test, velocity–endurance model, aerobic parameter, anaerobic parameter
論文種類: 學術論文
相關次數: 點閱:240下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:研究目的在探討間歇跑步測驗評量「速度耐力模式」之三個有氧與無氧參數(臨界速度,CV;無氧跑步能力,ARC;最大瞬間速度,Vmax)的效度。方法:研究以20名男性大學生為受試對象,受試者的平均年齡為22.4±1.66歲、平均身高為170.4±5.63公分與平均體重為66.9±11.95公斤。實驗設計是以在原地跑步機分別進行臨界速度測驗與間歇跑步測驗,利用三參數的「速度耐力模式」概念,推算出臨界測驗與間歇測驗各自的三個參數,包括CV、ARC與Vmax。接著,比較臨界測驗與間歇測驗各自的CV與最大攝氧量、心跳閾值和換氣閾值之相關;並且探討臨界測驗與間歇測驗各自的ARC和Vmax與短距離最大努力跑步測驗、Margaria-Kalamen動力測驗、Wingate 動力測驗以及MAOD測驗之相關;藉此確認臨界速度(CV)、無氧跑步能力(ARC)和最大瞬間速度(Vmax)的效度。結果:(1)臨界CV為2.1±0.48 m/sec和間歇CV為2.0±0.55 m/sec,這個變項達到顯著相關(r=0.911),差異檢定(t檢定)沒有達到顯著差異存在(p>.05);(2)臨界ARC為582.1±194.04 m和間歇ARC為342.1±166.36 m,以及臨界Vmax為5.9±2.38 m/sec和間歇Vmax為9.9±3.63 m/sec,兩個變項都沒有達到顯著相關,差異檢定(t檢定)達到顯著差異存在(p<.05);(3)有氧參數─CV的效度分析方面,間歇CV和臨界CV兩者不但顯著相關、沒有差異,與各項有氧運動能力呈現顯著相關,具有評量有氧運動能力的效度;(4)無氧參數─ARC和Vmax的效度分析方面,間歇和臨界的ARC 和 Vmax,兩個變項都未達相關,只有部份結果與無氧運動能力呈現相關,不能完全有效評量無氧運動能力。結論:間歇跑步測驗在有氧參數─CV的推算方面,確實可以取代臨界速度測驗;然而,間歇跑步測驗在無氧參數─ARC和Vmax方面,則不能完全取代臨界速度測驗。

    Purpose: This study was to evaluate the validity of three aerobic and anaerobic parameters (critical velocity, CV; anaerobic running capacity, ARC; maximal instantaneous velocity, Vmax) in velocity–endurance model by intermittent running test. Methods: Subjects were 20 male college students (22.4±1.66 yrs, 170.4±5.63 cm, 66.9±11.95 kg). In this experiment, critical velocity test and intermittent running test were evaluated on treadmill and the data of three parameters by velocity–endurance model were calculated. Then, the correlation of CV from critical velocity test and intermittent running test with those from maximal oxygen intake (VO2max), heart hate threshold (HRT), and ventilatory anaerobic threshold (VAT) were compared. Furthermore, the correlation of ARC and Vmax from critical velocity test and intermittent running test with those from short-distance running test, Margaria-Kalamen power test, Wingate power test, and maximal accumulated oxygen deficit test were assessed. Results: The results were: 1) The CV from critical velocity test (2.1±0.48 m/sec) and intermittent running test (2.0±0.55 m/sec) was significantly correlated (r=0.911) and not significantly different (p>.05). 2) The ARC from critical velocity test (582.1±194.04 m) and intermittent running test (342.1±166.36 m) as well as those of the Vmax from critical velocity test (5.9±2.38 m/sec) and intermittent running test (9.9±3.63 m/sec) were not significantly correlated (p<.05). 3) In aerobic parameter- CV validity analysis, the CV from critical velocity test and intermittent running test were significantly correlative with aerobic exercise ability and could evaluate this ability efficiently. 4) In anaerobic parameters- ARC and Vmax validity analysis, the ARC and Vmax from critical velocity test and intermittent running test were only parts of the data correlative with anaerobic exercise ability and could not evaluate it efficiently. Conclusion: In this study, intermittent running test is only valid for estimating aerobic- CV, but not for anaerobic- ARC and Vmax.

    中文摘要………………………………………………………………………Ⅰ 英文摘要………………………………………………………………………Ⅱ 謝誌……………………………………………………………………………Ⅲ 目次……………………………………………………………………………Ⅳ 表次……………………………………………………………………………Ⅵ 圖次……………………………………………………………………………Ⅶ 第壹章 緒論…………………………………………………………………1 一、研究背景…………………………………………………………………1 二、研究目的…………………………………………………………………4 三、研究假設…………………………………………………………………4 四、名詞操作性定義…………………………………………………………5 五、研究的重要性……………………………………………………………9 第貳章 文獻探討……………………………………………………………12 一、速度耐力模式……………………………………………………………12 二、無氧閾值概念……………………………………………………………14 三、無氧動力概念……………………………………………………………18 四、概念總結…………………………………………………………………20 第參章 研究方法與步驟……………………………………………………22 一、研究對象…………………………………………………………………22 二、研究方法與程序…………………………………………………………22 三、資料處理…………………………………………………………………36 第肆章 結果…………………………………………………………………38 一、受試者基本測驗資料……………………………………………………38 二、臨界速度測驗與間歇跑步測驗推算之三參數比較……………………44 三、有氧參數─CV與各項有氧運動能力測驗之相關比較…………………45 四、無氧參數─ARC和Vmax 與各項無氧運動能力測驗之相關比較………46 第伍章 討論…………………………………………………………………50 一、臨界速度測驗與間歇跑步測驗推算之有氧與無氧參數………………50 二、有氧參數─臨界速度(CV)與有氧運動能力……………………………52 三、無氧參數─ARC和Vmax 與無氧運動能力………………………………55 四、臨界速度測驗與間歇跑步測驗的測驗方式……………………………66 第陸章 結論與建議…………………………………………………………71 一、結論………………………………………………………………………71 二、建議………………………………………………………………………71 參考文獻………………………………………………………………………73 附錄一:受試者須知與同意書………………………………………………83 附錄二:受試者健康調查表…………………………………………………84

    一、中文部分
    王順正與林正常。(1992)。臨界負荷、肌電圖疲勞閾值與無氧閾值的關係研究。體育學報,14,207-226。
    王順正與林正常。(1994)。跑步臨界速度與無氧閾值的關係研究。中華民國大專院校83年度體育學術研討會專刊,411-426。
    王順正、王鶴森與林正常。(1995)。漸增強度運動測驗之臨界負荷與無氧閾值的關係研究。體育學報,19,145-156。
    王順正。(1998)。長跑選手臨界速度跑的生理反應研究。國立臺灣師範大學體育學系博士論文。國立臺灣師範大學體育學系,臺北市,臺灣。
    王順正、林正常、莊泰源與郭堉圻。(1998)。實驗室與田徑場跑步速度耐力模式測驗結果的比較。體育學報,26,289-296。
    王順正、林玉瓊、吳忠芳與林正常。(2002)。速度耐力模式評量無氧跑步能力與最大瞬間速度之研究。體育學報,33,1-10。
    李長生。(1997)。短距離捷泳與長距離捷泳導出之臨界速度的比較研究。國立臺灣師範大學體育學系碩士論文。國立臺灣師範大學體育學系,臺北市,臺灣。
    吳慧君。(1999)。運動能力的生理學評定。台北市:師大書苑。
    吳忠芳、王順正、莊泰源、林玉瓊與林正常。(2000)。長跑選手無氧跑步能力判定法之比較研究。體育學報,28,269-275。
    呂香珠。(1991)。無氧動力測驗的新詮釋及其應用時機。中華體育,16,61-69。
    林正常。(1993)。運動科學與訓練─運動教練手冊。台北縣:銀禾文化。
    林正常。(1996)。運動生理學實驗指引。台北市:師大書苑。
    戴堯種。(1995)。女子游泳選手之臨界速度對捷泳成績的預測研究。國立臺灣師範大學體育學系碩士論文。國立臺灣師範大學體育學系,臺北市,臺灣。
    龔憶琳。(1990)。無氧閾值在運動訓練上的應用。中華體育,12,107-117。
    二、英文部分
    Bangsbo, J., Michalsik, L., & Petersen, A. (1993). Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. International Journal of Sports Medicine, 14(4), 207-213.
    Beckenholdt, S.E., & Mayhew, J.L. (1983). Specificity among anaerobic power tests in male athletes. Journal of Sports Medicine and physical fitness, 23(3), 326-332.
    Billat, V.L., Slawinksi, J., Bocquet, V., Chassaing, P., Demarle, A., & Koralsztein, J.P. (2001). Very short (15s-15s) interval-training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. International Journal of Sports Medicine, 22(3), 201-208.
    Blondel, N., Berthoin, S., Billat, V., & Lensel, G. (2001). Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. International Journal of Sports Medicine, 22(1), 27-33.
    Bulbulian, R., Wilcox, A.R., & Darabos, B.L. (1986). Anaerobic contribution to distance running performance of trained cross-country athletes. Medicine and Science in Sports and Exercise, 18(1), 107-113.
    Bulbulian, R., Jeong, J.W., & Murphy, M. (1996). Comparison of anaerobic components of the Wingate and Critical Power tests in males and females. Medicine and Science in Sports and Exercise, 28(10), 1336-1341.
    Cellini, M., Vitiello, P., Nagliati, A., Ziglio, P.G., Martinelli, S., Ballarin, E., & Conconi, F. (1986). Noninvasive determination of the anaerobic threshold in swimming. International Journal of Sports Medicine, 7(6), 347-351.
    Conconi, F., Ferrari, M., Ziglio, P.G., Droghetti, P., & Codeca, L. (1982). Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 52(4), 869-873.
    deVries, H.A., & Moritani, T. (1980). A simple, direct method for estimation of aerobic power and anaerobic threshold. Abstract. Medicine and Science in Sports and Exercise, 12(2), 86.
    Gaesser, G.A., Carnevale, T.J., Garfinkel, A., Walter, D.O., & Womack, C.J. (1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Sports and Exercise, 27(10), 1430-1438.
    Green, S., Bishop, D., & Jenkins, D. (1995). Effect of end-point cadence on the maximal work-time relationship. European Journal of Applied Physiology and Occupational Physiology, 71(6), 559-561.
    Hermansen, L., & Medbo, J.I. (1984). The relative significance of aerobic and anaerobic processes during maximal exercise of short duration. Physiological Chemistry of Training and Detraining, New York, Karger, 56-67.
    Hill, D.W., & Smith, J.C. (1993). A comparsion of methods of estimating anaerobic work capacity. Ergonomics, 36(12), 1495-1500.
    Hill, D.W., & Smith, J.C. (1994). A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. Journal of Sports Medicine and Physical Fitness, 34(1), 23-37.
    Hill, D.W., & Ferguson, C.S. (1999). A physiological description of critical velocity. European Journal of Applied Physiology and Occupational Physiology, 79(3), 290-293.
    Hopkins, W.G., Edmond, I.M., Hamilton, B.H., Macfarlane, D.J., & Ross, B.H. (1989). Relation between power and endurance for treadmill running of short duration. Ergonomics, 32(12), 1565-1571.
    Housh, D.J., Housh, T.J., & Bauge, S.M. (1990). A methodological consideration for the determination of critical power and anaerobic work capacity. Research Quarterly for Exercise and Sport, 61(4), 406-409.
    Housh, T.J., Devries, H.A., Housh, D.J., Tichy, M.W., Smyth, K.D., & Tichy, A.M. (1991). The relationship between critical power and the onset of blood lactate accumulation. Journal of Sports Medicine and Physical Fitness, 31(1), 31-36.
    Housh, T.J., Johnson, G.O., McDowell, S.L., Housh, D.J., & Pepper, M.L. (1992). The relationship between anaerobic running capacity and peak plama lactate. Journal of Sports Medicine and Physical Fitness, 32(2), 117-122.
    Hughson, R.L., Orok, C.J., & Staudt, L.E. (1984). A high velocity treadmill running test to assess endurance running potential. International Journal of Sports Medicine, 5(1), 23-25.
    Jenkins, D.G., & Quigley, B.M. (1991). Y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics, 34(1), 13-22.
    Jenkins, D.G., & Quigley, B.M. (1992). Endurance training enhances critical power. Medicine and Science in Sports and Exercise, 24(11), 1283-1289.
    Kaczkowski, W., Montgomery, D.L., Taylor, A.W., & Klissouras, V. (1982). Relationship between muscle fiber composition and maximal anaerobic power and capacity. Journal of Sports Medicine and Physical Fitness, 22(4), 407-413.
    Kanaley, J.A., & Boileau, R.A. (1988). The onset of the anaerobic threshold at three stages of physical maturity. Journal of Sports Medicine and Physical Fitness, 28(4), 367-374.
    Kranenburg, K.J., & Smith, D.J. (1996). Comparison of critical speed determined from track running and treadmill tests in elite runners. Medicine and Science in Sports and Exercise, 28(5), 614-618.
    Lane, C.J., Steward, R.P., & Hill, D.W. (1994). Estimation of anaerobic capacity in swimmers using the critical power concept. Abstract. Medicine and Science in Sports and Exercise, 26,(5 Supplement), s44.
    McConnell, T.R. (1988). Practical considerations in the testing of VO2max in runners. Sports Medicine, 5(1), 57-68.
    McLellan, T.M., & Cheung, K.S. (1992). A comparative evaluation of the individual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 24(5), 543-550.
    Medbo, J.I., Mohn, A.C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O.M. (1988). Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology, 64, 50-60.
    Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8, 329-338.
    Moritani, T., Muro, M., Nagata, A., & DeVries, H.A. (1981). Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
    Morton, R.H. (1990). Modelling human power and endurance. Journal of Mathematical Biology, 28(1), 49-64.
    Morton, R.H., Fitz-Clarke, J.R., & Banister, E.W. (1990). Modeling human performance in running. Journal of Applied Physiology, 69(3), 1171-1177.
    Morton, R.H. (1996). A 3-parameter critical power model. Ergonomics, 39(4), 611-619.
    Morton, R.H., & Hodgson, D.J. (1996). The relationship between power output and endurance: a brief review. European Journal of Applied Physiology and Occupational Physiology, 73(6), 491-502.
    Nebelsick-Gullett, L.J., Housh, T.J., Johnson, G.O., & Bauge, S.M. (1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics, 31(10), 1413-1419.
    Smith, J.C., Dangelmaier, B.S., & Hill, D.W. (1999). Critical power is related to cycling time trial performance. International Journal of Sports Medicine, 20(6), 374-378.
    Toussaint, H.M., Wakayoshi, K., Hollander, A.P., & Ogita, F. (1998). Simulated front crawl swimming performance related to critical speed and critical power. Medicine and Science in Sports and Exercise, 30(1), 144-151.
    Vandewalle, H., Kapitaniak, B., Gruen, S., Raveneau, S., & Monod, H. (1989). Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. European Journal of Applied Physiology and Occupational Physiology, 58(4), 375-381.
    Vandewalle, H., Vautier, J.F., Kachouri, M., Lechevalier, J.M., & Monod, H. (1997). Work-exhaustion time relationships and the critical power concept: a critical review. Journal of Sports Medicine and Physical Fitness, 37(2), 89-102.
    Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., & Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state? European Journal of Applied Physiology and Occupational Physiology, 66(1), 90-95.
    Wasserman, K., Van Kessel, A.L., & Burton, G.G. (1967). Interaction of physiological mechanisms during exercise. Journal of Applied Physiology, 22(1), 71-85.
    Wasserman, K., Whipp, B.J., Koyal, S.N., & Beaver, W.L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied physiology, 35(2), 236-243.
    Wasserman, K., Whipp, B.J., Koyal, S.N., & Cleary, M.G. (1976). Effect of carotid body resection on ventilatory and acid-base control during exercise. Journal of Applied physiology, 39(3), 354-358.

    QR CODE