簡易檢索 / 詳目顯示

研究生: 侯新龍
Shin-Lon Ho
論文名稱: 糖及氮素對水稻基因表現的調控作用
Sugar and Nitrogen Regulation of Gene Expression in Rice
指導教授: 童武夫
Tong, Wu-Fu
余淑美
Yu, Su-May
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 1999
畢業學年度: 88
語文別: 中文
論文頁數: 179
中文關鍵詞: 水稻轉錄階層轉錄後階層訊息傳遞半胱胺酸內蛋白水解酵素啟動子農桿菌基因轉殖
英文關鍵詞: rice, transcriptional level, posttranscriptional, signal transduction, cysteine endoproteinase, promoter, Agrobacterium, gene transformation
論文種類: 學術論文
相關次數: 點閱:238下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    糖類(carbohydrate)和氮素(nitrogen)的代謝相互關聯而共同地影響植物的各種生理功能,因此我們藉探討二者對細胞內基因表現的調控方式,以進一步瞭解植物的生長發育及對環境適應的機制。
    首先探討糖調控基因表現的分子機制,以水稻懸浮培養細胞為材料,利用differential screening的方法從細胞缺糖4小時的cDNA library中獲得一群受糖抑制表現的基因(sugar down-regulated, SD genes);而獲自日本水稻基因組分析實驗室的一群與細胞生長有關的基因,經北方墨點法實驗則證明它們都是受糖誘導表現的基因(sugar up-regulated, SU genes)。再分別以nuclear run-on assay的方法,或培養液中加入actinomycin D抑制RNA轉錄的方法,已經確定這些受糖誘導或抑制表現的基因,是受調控於轉錄或轉錄後的階層(transcriptional or posttranscriptional levels),而這種調控作用對同一群屬於SD或SU的基因也具有一致性。
    接著我們探討糖的訊息傳遞途徑,以葡萄糖、蔗糖或葡萄糖的類似物3-OMG (3-O-methylglucose)及6-dG (6-deoxyglucose)處理水稻懸浮培養細胞,證明可以被磷酸化及代謝的糖,如葡萄糖及果糖(由蔗糖分解而來)均能誘導SU基因並抑制SD基因的表現;然而不能被磷酸化及代謝的糖,如3-OMG及6-dG,則無法誘導SU基因或抑制SD基因的表現。而糖代謝的中間產物pyruvate會抑制某些SD基因的表現,但SU基因的表現則不受影響,這些結果顯示糖訊息傳遞途徑與糖代謝途徑有重疊之處。利用蛋白質激(protein kinase)的抑制劑staurosporine及蛋白質去磷酸( protein phosphatases 1及2A )的抑制劑okadaic acid 處理水稻懸浮培養細胞,證明蛋白質的磷酸化作用及去磷酸化作用也參與糖調控SU及SD基因的表現。In-gel kinase活性分析顯示糖訊息可能經由一種38-KD的蛋白質激傳遞,最後抑制SD基因的表現。而缺糖訊息的傳遞則可能與55-、66-及68-KD的一組蛋白質激的活性有關,最後促進SD基因的表現。
    穀類種子發芽時,儲存於胚乳中的養分會被分解為糖,氨基酸或較小的胜以供給幼苗的生長利用。已知cysteine proteinase (CysP)是分解胚乳中儲藏性蛋白質最主要的酵素。為了要進一步瞭解CysP在水稻生理上所扮演的角色及其基因表現的調控機制。我們已經從水稻的genomic library中篩選得到一個CysP基因OsEP3A (Oryza sativa endoproteinase 3A)。從DNA序列分析及RT-PCR的結果顯示OsEP3A不含intron。利用南方墨點法證明它在水稻基因組中為單一基因,且至少由5~7個類似的基因組成一個基因族。北方墨點法顯示OsEP3A基因主要表現於發芽的種子及老化葉片中;而缺氮的水稻懸浮培養細胞也會誘導OsEP3A mRNA的大量累積。利用農桿菌(Agrobacterium)的基因轉殖技術,將OsEP3A啟動子/gusA的嵌合基因轉殖到水稻細胞,證明啟動子的活性的確受到氮素所調控。以GUS染色法分析發芽中的轉殖種子,也顯示啟動子的活性受到植物發育時期,組織特異性及賀爾蒙所調控。
    為了進一步探討雙子葉植物的種子於萌芽期間,α-amylase及CysP基因表現的差異,以瞭解兩者在雙子葉植物種子萌芽時的重要性。我們以空心菜為材料,發現在乾燥種子中便已累積大量的α-amylase及CysP mRNAs,當種子發芽初期兩種酵素的基因又會被誘導表現;其中胚乳的表現量在發芽第0.5天時達最高量,此後兩者mRNA的累積量均快速下降,到第3.5天時幾乎消失。然而在胚軸及子葉中則偵測不到α-amylase基因的表現,而CysP mRNA在萌芽胚軸中的累積情形與在胚乳中類似,在子葉中的表現則於萌芽第0.5天時逐漸被誘導表現到第2.5天時達最高量,之後其mRNA的累積量便快速的減少。由此證明CysP在雙子葉空心菜種子萌芽時似乎擔任較重要的角色。
    碳素及氮素是構成細胞的主要成分,兩者的代謝緊密的相互關連並影響植物的各種生理功能。綜合上述的結果,證明糖及氮素調控著許多不同基因的表現,而其訊息首先可能經由kinase來傳遞,再藉著一連串的訊息傳遞階梯,最後以協同調控的方式導致目標基因的活化及抑制作用,以便達到碳/氮平衡來維持細胞最佳之代謝機轉。目前許多研究報告推測細胞是以全面性的調控(general control)方式來維持碳素及氮素代謝的平衡,這也是將來值得研究的方向之一。

    英文摘要
    In plants, carbohydrate and nitrogen metabolism are tightly-linked physiological functions and are essential for growth and development. The aim of the present study is to elucidate the mechanisms of sugar and nitrogen regulation of gene expression, which may help us better understand how plants respond to developmental and environmental cues during their life cycle.
    First, to study the mechanisms that control sucrose-dependent gene expression, we performed differential screening of a cDNA library constructed from poly(A)+ mRNA prepared from 4 h sucrose-starved rice cells, and obtained six genes whose expression was sugar down-regulated (SD genes). Meanwhile, Northern blot analysis demonstrated that expression of several cDNAs, which encode proteins known to be required for cell growth, were sugar up-regulated (SU genes). Nuclear run-on transcription analysis and an assay with inhibition of mRNA transcription with actinomycin D demonstrated that expression of SU and SD genes in cultured rice suspension cells were differentially and coordinatelly regulated by sucrose at both transcriptional and posttranscriptional levels.
    Next, to study the sugar signal transduction pathway, rice suspension cells were treated with sucrose, glucose, or glucose analogs. The results showed that glucose by itself or glucose and fructose hydrolyzed from sucrose all activated the expression of SU genes and suppressed the expression of SD genes. In constrast, the glucose analogs, 3-OMG (3-O-methylglucose) and 6-dG (6-deoxyglucose), which cannot be phosphorylated and metabolized by cells, did not activate the expression of all the SU genes but suppressed the expression of certain SD genes in sucrose-starved sells. Pyruvate suppressed the expression of certain SD genes, which suggests that the sugar signal transduction pathway overlap the metabolic pathway for gene repression. Study with protein kinase and protein phosphatase inhibitors, staurosporine and okadaic acid, respectively, demonstrated that protein phosphorylation and dephosphorylation were involved in sugar-regulated expression of SU and SD genes. In-gel kinase activity assays revealed that a 38-KD protein kinase activity might be involved in the suppression of the SD genes by sugars, while a group of 55-, 66- and 68-KD protein kinase activity might be involved in the activation of the SD genes under sugar starvation.
    During the germination of cereal grains, sugar, amino acids, and small peptides derived from hydrolysis of endosperm nutrients are taken up by the embryos to support the growth of seedling. Cysteine proteinases (CysP) play a major role in the degradation of endosperm storage proteins. To investigate the significance of CysP expression in rice physiology and the regulatory mechanism of CysP expression, we isolated the genomic clones OsEP3A (Oryza sativa endoproteinase 3A). Genomic Southern blot analysis revealed that OsEP3A was a single copy gene and there were at least 5 to 7 genes encoding OsEP3A homologs in the rice genome. Northern blot anaylsis revealed that OsEP3A gene expression was preferentially expressed in germinating seeds and senescing leaves of rice. In cultured rice suspension cells, the expression of OsEP3A was up-regulated by nitrogen starvation. The OsEP3A promoter was linked to the coding sequence of a reporter gene, gusA, encoding b-glucuronidase (GUS), and stably introduced into the rice genome through an Agrobacterium transformation-mediated transformation system. The OsEP3A promoter was sufficient to confer the nitrogen metabolic regulation of GUS expression in cultured suspension cells. Histochemical study also indicated that the OsEP3A promoter was sufficient to confer the temporal, spatial and hormonal regulation of GUS expression in germinating seeds.
    We also studied the expression pattern of a-amylase and CysP in the germinating seeds of a dicot plants, water spinach (Ipomoea auuatica Forsk). Accumulation of a-amylase and CysP mRNAs was aboundant in mature dry seeds. After the onset of germination, levels of both mRNAs in endosperm were enhanced and reached at peaks at day 0.5, then decreased rapidly to a very low level at day 3.5. However, no a-amylase mRNA was detected in axises and cotyledons of germinating seeds. The expression patterns of CysP mRNA were similar in both axises and endosperms during seeds germination. The accumulation of CysP mRNA in cotyledons increased gradually 0.5 day after imbibition, reached a peak at day 2.5, and then decreased sharply.
    In plants, carbon and nitrogen are the two most important elements in maintaining cell structure and life. These two elements control expression of a variety of genes related to growth and metabolism. As cells are capable of maintaining a balance in ratio of carbon to nitrogen, suggesting that the synthesis and utilization of these two elements are tightly controled. It would be interesting to study in future whether there exist general mechanisms for sugar and nitrogen regulation of gene expression, and whether the sugar and nitrogen signal transduction pathways cross-talk in respond to changes in physiological and environmental conditions.

    目錄 頁次 中文摘要………………………………………………………………….1 英文摘要………………………………………………………………….4 緒言……………………………………………………………………….7 第一章 糖對懸浮培養之水稻細胞基因表現的調控機制 第一節 摘要………………………………………………………….9 第二節 前人研究……………………………………………………10 第三節 材料與方法…………………………………………………14 第四節 結果 1. 糖調控細胞mRNA及rRNA的累積………………………….40 2. 受糖誘導表現(sugar up-regulated)的基因(SU genes)………………………………………………………41 3. 篩選受細胞缺糖誘導但受糖抑制表現(sugar down- regulated)的基因(SD genes)…………………………….41 4. 糖調控基因的表現於轉錄階層(transcriptional level)的探討………………………………………………………43 5. 糖調控基因的表現於轉錄後階層(posttranscriptional level) 的探討…………………………………………….43 第五節 討論…………………………………………………………55 第二章 糖調控懸浮培養之水稻細胞基因表現的訊息傳遞路徑 第一節 摘要…………………………………………………………59 第二節 前人研究……………………………………………………61 第三節 材料與方法…………………………………………………66 第四節 結果 1. 葡萄糖類似物(glucose analogs)對SU及SD基因 表現的影響…………………………………………………76 2. 糖代謝的中間產物pyruvate對SU及SD基因表現的 影響…………………………………………………………77 3. 蛋白質激(PK)及蛋白質去磷酸(PP)是否參與糖調 控基因表現的訊息傳遞路徑………………………………77 4. 含糖(+S)及缺糖(-S)訊息專一性蛋白質激的偵測……78 5. 篩選缺糖專一性誘導表現的蛋白質激基因及缺糖早 期誘導表現的基因並研究其是否媒介糖的訊息傳遞……79 a.水稻蛋白質激基因的選殖……………………………… 79 b.利用Differential Display的方法篩選受缺糖早期誘 導表現的基因………………………………………………80 c.利用北方墨點法檢視基因在水稻懸浮培養細胞中的表 現是否為缺糖所專一性誘導………………………………80 d. 利用antisense基因的方式抑制細胞內生(endogenous) 基因的表現,以研究是否媒介糖的訊息傳遞…………….81 6. 發展一種在水稻細胞表現高活性的啟動子以利轉殖 基因的功能分析……………………………………………81 a. A1基因的選殖及特性分析………………………………..81 b. A1基因在水稻懸浮培養細胞及植株生長發育過程中 的表現………………………………………………………82 c. 構築A1啟動子/gusA的表現載體以便檢視A1啟動子 在水稻細胞中的活性………………………………………83 d.利用activation T-DNA tagging 的方法篩選糖調控 aAmy3基因表現的上游基因……………………………………………………83 第五節 討論………………………………………………………….108 第三章 氮素對水稻cysteine proteinase OsEP3A基因表現的 調控機制 第一節 摘要………………………………………………………….114 第二節 前人研究…………………………………………………….115 第三節 材料與方法………………………………………………….118 第四節 結果 1. 水稻CysP genomic DNA的選殖及特性分析……………….120 2. 水稻種子發芽時及植株發育過程中OsEP3A基因的表現….121 3. 氮素對水稻懸浮培養細胞中OsEP3A基因表現的調控作用.121 4. 利用基因轉殖技術分析氮素在水稻懸浮培養細胞中 對OsEP3A啟動子的調控作用……………………………….122 5. 利用GUS染色法來分析OsEP3A基因在轉殖種子發 芽時期的表現…………………………………………………124 第五節 討論……………………………………………………………140 第四章 空心菜(Ipomoea aquatica Forsk)種子萌發期間 α-amylase及cysteine proteinase基因的表現 第一節 摘要……………………………………………………………144 第二節 前人研究………………………………………………………145 第三節 材料與方法……………………………………………………147 第四節 結果 1. 空心菜α-amylase及CysP基因的genomic DNA南方墨 點法分析…………………………………………………….148 2. α-amylase及CysP基因在空心菜種子發芽期間的表現….148 第五節 討論 ………………………………………………………..154 參考文獻 ……………………………………………………………….156 附錄 …………………………………………………………………….175

    參考文獻
    Akasofu, H., Yamauchi, D., Mitsuhashi, W. and Minamikawa, T. (1989). Nucleotide sequence of cDNA sulfhydryl-endopeptidase (SH-EP) from cotyledons of germinating Vigna mungo seeds. Nucl. Acids Res. 17, 6733.
    Adler, S.P., Purich, D. and Stadtman, E.R. (1975). Cascade control of Escherichia coli glutamine synthetase: properties of the PⅡ regulatory protein and the uridylyltransferase-uridylyl removing enzyme. J. Biol. Chem. 250, 6264-6272.
    Alderson, A., Sabelli, P.A., Dickinson, J.R., Cole, D., Richardson, M., Kreis, M., Shewry, P.R. and Halford, N.G. (1991). Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc. Natl. Acad. Sci. USA 88, 8602-8605.
    Atkinson, M.R., Kamberov, E.S., Weiss, R.L. and Ninfa, A.J. (1994). Reversible uridylylation of the Escherichia coli PⅡ signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC). J. Biol. Chem. 269, 28288-28293.
    Bandziulis, R.J., Swanson, M.S. and Dreyfuss, G. (1989). RNA-binding proteins as development regulators. Genes Dev. 3, 431-437.
    Bate, N.J., Rothstein, S.J. and Thompson, J.E. (1991). Expression of nuclear and chloroplast photosynthesis-specific genes during leaf senescence. J. Exp. Bot. 42, 801-811.
    Berges, J.A., Charlebois, D.O., Mauzerall, D.C. and Falkowski, P.G. (1996). Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and Ⅱ in microalgae. Plant Physiol. 110, 689-696.
    Bienvenido, O.J. and Varner, J.E. (1969). Enzymatic degradation of starch granules in the cotyledons of germinating peas. Plant Physiol. 44, 886-892.
    Blank, A. and McKeon, T.A. (1989). Single-strand preferring nuclease activity in wheat leaves is increased in senescence and is negatively photoregulated. Proc. Natl. Acad. Sci. USA 86, 3169-3173.
    Botella, J.R., Arteca, J.M., Somodevilla, M. and Arteca, R.N. (1996). Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata). Plant Mol. Biol. 30, 1129-1137.
    Braford, M.M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 112, 195-203.
    Breviario, D., Morello, L. and Giani, S. (1995). Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinase. Plant Mol. Biol. 27, 953-967.
    Brouquisse, R., James, F., Raymond, P. and Pradet, A. (1991). Study of glucose starvation in excised maize root tips. Plant Physiol. 96, 619-626.
    Brouquisse, R., James, F., Pradet, A. and Raymond, P. (1992). Asparagine metabolism and nitrogen distribution during protein degradation in sugar-starved maize root tips. Planta 188, 384-395.
    Brown, P.H. and Ho, T.H.D. (1986). Barley aleurone layers secrete a nuclease in response to gibberellic acid . Plant Physiol. 82, 801-806.
    Brown, P.H. and Ho, T.H.D. (1987). Biochemical properties and hormonal regulation of barley nuclease. Eur. J. Biochem. 168, 357-364.
    Callis, J. (1995). Regulation of protein degradation. Plant Cell 7, 845-857.
    Canut, H., Dupre, M., Carrasoco, A. and Boudet, A.M. (1987). Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541-549.
    Carling, D., Aguan, K., Woods, A.J.M. and Scoot, J. (1994). Mammalian AMP-activated protein kinase is homologus to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 289, 11442-11448.
    Cejudo, F.J., Murphy, G., Chinoy, C. and Baulcombe, D.C. (1992). A gibberellin-regulated gene from wheat with sequence homology to cathepsin B of mammalian cells. Plant J. 2, 937-948.
    Cervantes, E., Rodriguez, A. and Nicolas, G. (1994). Ethylene regulates the expression of a systeine proteinase gene during germination of chickpea (Cicer arietinum L.). Plant Mol. Biol. 25, 207-215.
    Chan, M.T. and Yu, S.M. (1998a). The 3' untranslated region of a rice α-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15, 685-695.
    Chan, M.T. and Yu, S.M. (1998b). The 3'untranslated region of a rice α-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc. Natl. Acad. Sci. USA 95, 6543-6547.
    Chan, M.T., Chao, Y.C. and Yu, S.M. (1994). Novel gene expression system for plant cells based on induction of α-amylase promoter by carbohydrate starvation. J. Biol. Chem. 269, 17635-17641.
    Chen, M.H., Liu, L.F., Chen, Y.R., Wu, H.K. and Yu, S.M. (1994). Expression of α-amylase, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J. 6, 625-636.
    Cheng, C.L., Acedo, G.N., Cristinsin, M. and Conkling, M.A. (1992). Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc. Natl. Acad. Sci. USA 89, 1861-1864.
    Cheng, S.H., Keller, B. and Condit, C.M. (1996). Common occurrence of homologues of petunia glycine-rich protein-1 among plants. Plant Mol. Biol. 31, 163-168.
    Chevalier, C., Bourgeois, E., Pradet, A and Raymond, P. (1995). Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips. Plant Mol. Biol. 28, 473-485.
    Chrispeels, M.J. and Varner, J.E. (1967). Gibberellic acid-enhanced synthesis and release of α-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol. 42, 398-406.
    Christensen, A.H., Sharrock, R.A. and Quail, P.H. (1992). Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675-689.
    Claes, B., Dekeyser, R., Villarroel, R., Bulcke, M.V., Bauw, G., Van Montagu, M. and Caplan, A. (1990). Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell 2, 19-27.
    Cobianchi, F., Karpel, R.L., Williams, K.R., Notario, V. and Wilson, S.H. (1988). Mammalian heterogeneous nuclear ribonucleoprotein complex protein A1: large-scale overproduction in Escherichia coli and cooperative binding to single-stranded nucleic acids. J. Biol. Chem. 263, 1063-1071.
    Condit, C.M. and Meagher, R.B. (1987). Expression of a gene encoding a glycine-rich protein in petunia. Mol. Cell. Biol. 7, 4273-4279.
    Criqui, M.C., Durr, A., Parmentier, Y., Marbach, J., Fleck, J. and Jamet, E. (1992). How are photosynthetic genes repressed in freshly-isolated mesophyll protoplasts of Nicotiana sylvestris? Plant Physiol. Biochem. 30, 597-601.
    Dai, N., Schaffer, A., Petreikov, M., Shahak, Y., Giller, Y., Ratner, K., Levine, A. and Granot, D. (1999). Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11, 1253-1266.
    de Oliveira, D.E., Seurinck, J., Inze, D., Van Montagu, M. , and Botterman, J. (1990). Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2, 427-436.
    de Oliveira, D.E., Franco, L.O., Simoens, C., Seurinck, J., Coppieters, J., Botterman, J. and Van Montagu, M. (1993). Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 3, 495-507.
    Dieuaide, M., Brouquisse, R., Pradet, A. and Raymond, P. (1992). Increased fatty acid β-oxidation after glucose starvation in maize root tips. Plant Physiol. 99, 595-600.
    Dominguez, F. and Cejudo, F.J. (1998). Germination-related genes encoding proteolytic enzymes are expressed in the nucellus of developing wheat grains. Plant J. 15, 569-574.
    Drake, R., John, I., Farrell, A., Cooper, W., Schuch, W. and Grierson, D. (1996). Isolation and analysis of cDNAs encoding tomato cysteine proteinases expressed during leaf senescence. Plant Mol. Biol. 30, 755-767.
    Dreyfuss, G., Matunis, M.J., Pinol, R.S. and Burd, C.D. (1993). hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289-321.
    Ehness, R., Ecker, M., Godt, D.E. and Roitsch, T. (1997). Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant cell 9, 1825-1841.
    Entian, K.-D., Hiberg, F., Opitz, H. and Mecke, D. (1985). Cloning of hexokinase structure genes from saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol. Cell. Biol. 5, 3035-3040.
    Estruch, J.J., Kadwell, S., Merlin, E. and Crossland, L. (1994). Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc. Natl. Acad. Sci. USA 91, 8837-8841.
    Fang, R.X., Pang, Z., Gao, D.M., Mang K.Q. and Chua, N.H. (1991). cDNA sequences of a virus-inducible, glycine-rich protein gene from rice. Plant Mol. Biol. 17, 1235-1257.
    Feinberg, A.P. and Vogelstein, B. (1983). A technique for ration labeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6-13.
    Feldman, K. (1992). T-DNA insertional mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71-82.
    Filho, E.G. and Sodek, L. (1988). Effect of salinity on ribonuclease activity of Vigna unguiculata cotyledons during germination. J. Plant Physiol. 132, 307-311.
    Fincher, G. (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 305-346.
    Forchhammer, K. and DE Marsac, N.T. (1995). Functional analysis of the phosphoprotein PII (glnB gene product) in the cyanobacterium Synechococcus sp. Strain PCC 7942. J. Bacteriol. 177, 2033-2040.
    Forchhammer, K. and Hedler, A. (1997). Phosphoprotein PII from cyanobacteria; analysis of function conservation with the PII signal-transduction protein from Escherichia coli. Eur. J. Biochem. 244, 869-875.
    Garcia, A.B., Engler, J.A., Iyer, S., Gerats, T., Van Montagu, M. and Caplan, A.B. (1997). Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 115, 159-169.
    Genix, P., Bligny, R., Martin, J.B. and Douce, R. (1990). Transient accumulation of asparagine in sycamore cells after a long period of sucrose starvation. Plant Physiol. 94, 717-722.
    Gibson, S. and Somerville, C.R. (1993). Isolating plant genes. Trends Biotechnol. 11, 306-313.
    Godt, D.E., Riegel, A. and Rotisch, T. (1995). Regulation of sucrose synthase expression in Chenopodium rubrum: characterization of sugar induced expression in photoautotrophic suspension cultures and sink tissue specific expression in plants. J. Plant Physiol. 146, 231-238.
    Gomez, J., Sanchez, M.D., Stiefel, V., Rigau, J., Puigdomenech, P. and Pages, M. (1988). A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334, 262-264.
    Goodwin, P.B. and Carr, D.J. (1972). The induction of amylase synthesis in barley aleurone layers by gibberellic acid: response to temperature. J. Exp. Bot. 23, 1-7.
    Graham, I.A., Leaver, C.J. and Smith, S.M. (1992). Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4, 349-357.
    Graham, I.A., Denby, K.J. and Leaver, C.J. (1994). Carbon catabolite repression regulate glyoxylate cycle gene expression in cucumber. Plant Cell 6, 761-772.
    Graham, I.A. (1996). Carbohydrate control of gene expression in higher plants. Res. Microbiol. 147, 572-580.
    Green, P.J. (1994). The ribonucleases of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 421-445.
    Halford, N.G., Vicente-Carbajosa, J., Sabelli P.A., Shewry, P.R., Hannappel, U. and Kreis, M. (1992). Molecular analyses of a barley multigene family homologous to the yeast protein kinase gene SNF1. Plant J. 2, 791-797.
    Halford, N.G., Purcell, P.C. and Grahame Hardie, D. (1999). Is hexokinase really a sugar sensor in plants. Trends Plant Sci. 4, 117-120.
    Hanano, S., Sugita, M. and Sugiura, M. (1996). Isolation of a novel RNA-binding protein and its association with a large ribonucleoprotein particle present in the nucleoplasm of tobacco cells. Plant Mol. Biol. 31, 57-68.
    Hardie, D.G., Carling, D. and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell ? Annu. Rev. Biochem. 67, 821-855.
    Harper, J.F., Huang, J.F. and Lloy, S.J. (1994). Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochem. 33, 7267-7277.
    Harter, K., Talke-Messerer, C., Barz, W. and Schafer, E. (1993). Light and sucrose-dependent gene expression in photomixotrophic cell suspension cultures and protoplasts of rape. Plant J. 4, 507-516.
    Hattori, T., Nakagawa, S. and Nakamura, K. (1990). High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in vitro on sucrose medium. Plant Mol. Biol. 14, 595-604.
    Hayashi, H., Czaja, I., Lubenow, H., Schell, J. and Walden, R. (1992). Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 258, 1350-1353.
    Hensel, L.L., Grbic, V., Baumgarten, D.A. and Bleeker, A.B. (1994). Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5, 553-564.
    Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.
    Hirasawa, E. (1989). Auxins induceα-amylase activity in pea cotyledons. Plant Physiol. 91, 484-486.
    Hirochika, I., Sugimoto, K., Otsuki, Y., Tsugawa, H. and Kanda, M. (1996). Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93, 7783-7788.
    Hirochika, H. (1997). Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol. Biol. 35, 231-240.
    Hirose, T., Sugita, M. and Sugiura, M. (1994). Characterization of a cDNA encoding a novel type of RNA-bimding protein in tobacco: its expression and nucleic acid-binding properties. Mol. Gen. Genet. 244, 360-366.
    Hirt, H. (1997). Multiple roles of MAP kinases in plant signal transduction. Treds Plant Sci. 2, 11-15.
    Ho, S.L., Tong, W.F. and Yu, S.M. (2000). Mutiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol. 122, 1-10.
    Horvath, D.P. and Olson, P.A. (1998). Cloning and characterization of cold-regulated glycine-rich RNA-binding protein genes from leafy spurge (Euphorbia esula L.) and comparison to heterologous genomic clones. Plant Mol. Biol. 38, 531-538.
    Hsieh, M.H., Lam, H.M., Loo, F.J. and Coruzzi, G. (1998). A PII like protein in Arabidopsis: putative role in nitrogen sensing. Proc. Natl. Acad. Sci. USA 95, 13965-13970.
    Huang, N., Chandler, J., Thomas, B.R., Koizumi, N. and Rodriguez, R.L. (1993). Metabolic regulation of α-amylase gene expression in transgenic cell cultures of rice. Plant Mol. Biol. 23, 737-747.
    Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K., Terada, R., Wu, C., Miyazaki, C., Endo, T., Iida, S. and Shimamoto,K. (1997). Transposon tagging in rice. Plant Mol. Biol. 35, 219-229.
    Jacobsen, J.V. and Vaner, J.E. (1967). Gibberellic acid-induced synthesis of protease by isolated layers of barley. Plant Physiol. 42, 1596-1600.
    James, F., Brouquisse, R., Pradet, A. and Raymond P. (1993). Changes in proteolytic activities in glucose-starved maize root tips. Regulation by sugars. Plant Physiol. Biochem. 31, 845-856.
    Jang, JC. and Sheen, J. (1994). Sugar sensing in higher plants. Plant Cell 6, 1665-1679.
    Jang, J.C. amd Sheen, J. (1997). Sugar sensing in higher plants. Trends plant Sci. 2, 208-214.
    Jang, J.C., Leon, P., Zhou, L. and Sheen, J. (1997). Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5-19.
    Jefferson, R., Goldsbrouh, A. and Bevan, M. (1990). Transcriptional regulation of a patatin-1 gene in potato. Plant Mol. Biol. 14, 995-1006.
    Jiang, R. and Carlson, M. (1996). Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10, 3105-3115.
    Jonak, C., Kiegerl, S., Ligterink, W., Barker, P., Huskisson, N.S. and Hirt, H. (1996). Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93, 11274-11279.
    Journet, E.P., Bligny, R. and Douce, R. (1986). Biochemical changes during sucrose deprivation in higher plant cells. J. Biol. Chem. 261, 3193-3199.
    Kamachi, K., Yamaya, T., Hayakaura, T., Mae, T. and Oijama, K. (1992). Changes in cytosolic glutamine synthase polypeptide and its mRNA in a leaf blade of rice plants during natural senescence. Plant Physiol. 98, 1323-1329.
    Kato, H. and Minamikawa, T. (1996). Identification and characterization of a rice cysteine endopeptidase that digests glutelin. Eur. J. Biochem. 239, 310-316.
    Kawasaki, T., Hayashida, N., Baba, T., Shinozaki, K. and Shimada, H. (1993). The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme I is specifically expressed in developing rice seeds. Gene 129, 183-189.
    .
    Kawashima, I., Kennedy, T.D., Chino, M. and Lane, B. (1992). Wheat Ec metallothionein genes: like mammalian Zn metallothionein genes, wheat Zn metallothionein genes are conspeicuously expressed during embryogenesis. Eur. J. Biochem. 209, 971-976.
    Keller, B., Schmid, J. and Lamb, C.J. (1989). Vascular expression of a bean cell wall glycine-rich protein-β-glucuronidase gene fusion in transgenic tobacco. EMBO J. 8, 1309-1314.
    Kim, S.R., Costa, M.A. and An, G. (1991). Sugar response element enhances wound response of potato proteinase inhibitor II promoter in transgenic tobacco. Plant Mol. Biol. 17, 973-983.
    .
    Koch, K.E., Nolte, K.D., Duke, E.R., McCarty, D.R. and Avigne, W.T. (1992). Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4, 59-69.
    Koch, K.E. (1996). Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-540.
    Koch, K.E., Wu, Y. and Xu, J. (1996). Sugar and metabolic regulation of genes for sucrose metabolism: potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. J. Exp. Bot. 47, 1179-1185.
    Kock, M., Loffler, A., Abel, S. and Glund, K. (1995). cDNA structure and regulatory properties of a family of starvation-induced ribonucleases from tomato. Plant Mol. Biol. 27, 477-485.
    Koehler, S.M. and Ho, T.H.D. (1988). Purification and characterization of gibberellic acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 87, 95-103.
    Koehler, S.M. and Ho, T.H.D. (1990a). A major gibberellic acid-induced barley cysteine proteinase which digests hordein. Plant Physiol. 94, 251-258.
    Koehler, S.M. and Ho, T.H.D. (1990b). Hormonal regulation, processing, and secretion of cysteine proteinases in barley aleurone layers. Plant Cell 2, 769-783.
    Kohno, A. and Nanmori, T. (1991). Change inα- and β-amylase activities during germination of seeds of alfalfa (Medicago saliva L.). Plant Cell Physiol. 32, 459-466.
    Koizumi, A., Shinozaki, K.Y., Tsuji, H. and Shinozaki, K. (1993). Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 128, 175-182.
    Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M. and Goldberg, R.B. (1990). Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2, 1201-1224.
    Koncz, C., Nemeth, K., Redei, G.P. and Schell, J. (1992). T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963-976.
    Koshiba, T. and Minamikawa, T. (1983). In vivo synthesis and turnover of α-amylase in attached and detached cotyledons of Vigna mungo seeds. Plant Physiol. 71, 173:176.
    Kotha, S. and Rameshwar, S. (1989). β-amylase from mustard (Sinapis alba L.) cotyledons. Plant Physiol. 89, 860-866.
    Krapp, A., Horfmann, B., Schaefer, C. and Stitt, M. (1993). Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: A mechanism for the 'sink regulation 'of photosynthesis? Plant J. 3, 817-828.
    Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B. and Ward, J.M. (1999). The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11, 707-726.
    Lawton, M.A., Yamamoto, R.T., Hanks, S.K. and Lamb, C.J. (1989). Molecular cloning of plant transcripts encoding protein kinase homologs. Proc. Natl. Acad. Sci. USA 86, 3140-3144.
    Lee, H.M., Flores, E., Herrero, A., Houmard, J. and Marsac, N.T. (1998). A role for the signal transduction protein PII in the control of nitrate/nitrite uptake in a cyanobacterium. FEBS Lett. 427, 291-295.
    LeGuen, L., Thomas, M., Bianchi, M., Halford, N.G. and Kreis, M. (1992). Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase. Gene 120, 249-254.
    Lei, M. and Wu, R. (1991). A novel glycine-rich cell wall protein gene in rice. Plant Mol. Biol. 16, 187-198.
    Lin, X., Chern, M.S. and Zimmerman, J.L. (1991). Cloning and characterization of a carrot hsp70 gene. Plant Mol. Biol. 17, 1245-1249.
    Linthorst, H.J.M., van der Does, C., Brederode, F.T. and Bol, J.F. (1993). Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol. Biol. 21, 685-694.
    Locker, A. and Ilan, I. (1975). On the nature of the hormonal regulation of amylase activity in cotyledons of germinating peas. Plant Cell Physiol. 16, 449-454.
    Lohman, K.N., Gan, S., John, M.C. and Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 92, 322-328.
    Lu, C.A., Lim, E.K. and Yu, S.M. (1998). Sugar response sequence in the promoter of a rice α-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273, 10120-10131.
    Lue, M.Y. and Lee. H.T. (1994). Protein phosphatase inhibitors enhance the expression of an a-amylase gene, aAmy3, in cultured rice cells. Biochem. Biophy. Res. Comm. 205, 807-816.
    Luque, I., Flores, E. and Herrero, A. (1994). Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J. 13, 2862-2869.
    Maas, C., Schaal, S. and Werr, W. (1990). A feedback control element near the transcription start site of the maize Shrunken gene determines promoter activity. EMBO J. 9, 3447-3452.
    Macknight, R., Lister, C. and Dean, C. (1998). Rice cDNA clones OsGRP1 and OsGRP2 define two classes of glycine-rich RNA binding proteins. Plant Physiol. 117, 1527-1527.
    Markwardt, D.D., Garrett, J.M., Eberhardy, S. and Heideman, W. (1995). Activation of the Ras/Cyclic AMP pathway in the yeast Saccharomyces cerevisiae does not prevent G1 arrest in response to nitrogen starvation. J. Bacterol. 177, 6761-
    6765.
    Mattaj, I.W. (1990). Splicing stories and poly(A) tales: an update on RNA processing and transport. Curr. Opin. Cell Biol. 2, 528-538.
    Mikkonen, A., Porali, I., Cercos, M. and Ho, T.H.D. (1996). A major cysteine proteinase, EPB, in germinating barley seeds: structure of two intronless genes and regulation of expression. Plant Mol. Biol. 31, 239-254.
    Miklashevichs, E., Czaja, I., Cordeiro, A., Prinsen, E., Schell, J. and Walden, R. (1997). T-DNA tagging reveals a novel cDNA triggering cytokinin and auxin-independent protoplast division. Plant J. 12, 489-498.
    Minamikawa, T. (1979). Hydrolytic enzyme activities and degradation of storage components in cotyledons of germinating Phaseolus mungo seeds. Bot. Mag. Takyo 92, 1-12.
    Mizoguchi, T., Gotoh, Y., Nishida, E., Yamaguchi-Shinozaki, K., Hayashida, N., Iwasaki, T., Kamada, H. and Shinozaki, K. (1994). Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 5, 111-122.
    Monroy, A.F. and Dhindsa, R.S. (1995). Low-temperature signal transduction: induction of cold acclimation- specific genes of alfalfa by calcium at 25 degrees C. Plant Cell 7, 321-331.
    Morohashi, Y., Katoh, H., Kaneko, Y. and Matsushima, H. (1989). Control ofα-amylase development in cotyledons during and following germination of mung bean seeds. Plant Physiol. 91, 253-258.
    Muller-Rober, B.T., Kosmann, J., Hannah, C., Willmitzer, L. and Sonnewald, U. (1990). One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol. Gen. Genet. 224, 136-146.
    Muranaka, T., Banno, H. and Machida, Y. (1994). Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol. Cell Biol. 14, 2958-2965.
    Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473-497.
    Nadeau, J.A., Zhang, X.S., Li, J. and O’Neill, S.D. (1996). Ovule development: identification of stage-specific and tissue -specific cDNAs. Plant Cell 8, 213-239.
    Nelson, D.E., Raghothama, K.G., Singh, N.K., Hasegawa, P.M. and Bressan, R.A. (1992). Analysis of structure and transcriptional activation of an osmotin gene. Plant Mol. Biol. 19, 577-588.
    Ohta, S., Hattori, T., Morikami, A. and Nakamura, K. (1991). High-level expression of a sweet potato sporamin gene promoter: β-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by mutiple cell type-specific regulatory elements. Mol. Gen. Genet. 225, 369-378.
    Ohto, M., Hayashi, K., Isobe, M. and Nakamura, K. (1995). Involvement of calcium signalling in the sugar-inducible expression of genes coding for sporamin and b-amylase of sweet potato. Plant J. 7, 297-307.
    Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. (1996). Plant cells contain two functionally distinct vacuolar compartments. Cell 85, 563-572.
    Pego, J.V., Weisbeek, P.J. and Smeekens, S.C.M. (1999). Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 119, 1017-1024.
    Purcell, P.C., Smith, A.M. and Halford, N.G. (1998). Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. Plant J. 14, 195-202.
    Ranjhan, S., Karrer, E.E. and Rodrigues, R.L. (1992). Localizing α-amylase gene expression in germinated rice grains. Plant Cell Physiol. 33, 73-79.
    Raz, V. and Fluhr, R. (1993). Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5, 523-530.
    Robinson, L.C., Gibbs, J.B., Marshall, M.S., Signal, I.S. and Tatchall, K. (1987). CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 235, 1218-1221.
    Rogers, S.W. and Rogers, J.C. (1999). Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. Plant Physiol. 119, 1457-1464.
    Roitsch, T., Bittner, M. and Godt, D.E. (1995). Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol. 108, 285-294.
    Saglio, P. and Pradet, A. (1980). Soluble sugars, respiration, and energy charge during aging of excised maize root tips. Plant Physiol. 66, 516-519.
    Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    Sheen, J. (1990). Metabolic repression of transcription in higher plants. Plant Cell 2, 1027-1038.
    Sheen, J. (1993). Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J. 12, 3497-3505.
    Sheen, J. (1994). Feedback control of gene expression. Photosyn. Res. 39, 427-438.
    Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274, 1900-1902.
    Sheng, J., Jeong, J. and Mehdy, M.C. (1993). Developmental regulation and phytochrome-mediated induction of mRNAs encoding a proline-rich, glycine-rich proteins, and hydroxyproline-rich glycoproteins in Phaseolus vulgaris L. Proc. Natl. Acad. Sci. USA 90, 828-832.
    Sheu, J.J., Jan, S.P., Lee, H.T. and Yu, S.M. (1994). Control of transcription and mRNA turnover as mechanisms of metabolic repression of α-amylase gene expression. Plant J. 5, 655-664.
    Sheu, J.J., Yu, T.S., Tong, W.F. and Yu, S.M. (1996). Carbohydrate starvation stimulates differential expression of rice α-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J. Biol. Chem. 271, 26998-27004.
    Shih, M.C. and Goodman, H.M. (1988). Differential light regulated expression of nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenase in Nicotiana tabacum. EMBO J. 7, 893-898.
    Shintani, A., Kato, H. and Minamikawa, T. (1997). Hormonal regulation of expression of two cysteine endopeptidase genes in rice seedlings. Plant Cell Physiol. 38, 1242-1248.
    Showalter, A.M., Zhou, J., Rumeau, D., Worst, S.G. and Varner, J.E. (1991). Tomato extensin and extensin-like cDNAs: structure and expression in response to wounding. Plant Mol. Biol. 16, 547-565.
    Smeekens, S. and Rook, F. (1997). Sugar sensing and sugar-mediated signal transduction in plant. Plant Physiol. 115, 7-13.

    下載圖示
    QR CODE