簡易檢索 / 詳目顯示

研究生: 陳膺成
Ying-Cheng Chen
論文名稱: 女子排球選手沙地起跳動作之運動生物力學研究
The Sports Biomechanical Analysis of Takeoff Movement by Female Volleyball Players on Sand Surface
指導教授: 黃長福
Huang, Chen-Fu
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 94
中文關鍵詞: 女子排球選手沙灘排球起跳動作肌電圖
英文關鍵詞: female players, beach volleyball, takeoff movement, EMG
論文種類: 學術論文
相關次數: 點閱:192下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的有二個部分:一、透過3D運動學的分析,來了解沙灘女子排球選手與室內排球選手在沙地起跳時,動作結構的差異。二、透過下肢肌群的肌電訊號分析,來了解沙灘女子排球選手與室內排球選手在沙地起跳時,下肢肌群在不同分期的施力方式與差異。以八位女子「沙灘選手」、八位「優秀選手」與八位「次優選手」為研究對象,以二部Casio EX-FH20數位攝影機(210Hz)與一套Noraxon肌電量測系統(1000Hz)進行同步,擷取三組受試者在沙灘排球場地跨步起跳動作的運動生物力學參數。以單因子變異數分析來檢測所測得之運動學參數與下肢肌群肌電訊號,再以費雪氏法進行事後比較,統計顯著水準定為α=.05。本研究之主要結果為:一、「沙灘選手」有較佳的起跳合速度與起跳垂直速度,所以有最大的跳躍高度,和接近垂直的起跳角度。「沙灘選手」的助跑步幅最小,且有向上跳躍的動作,所以右腳支撐期時間最短。且「沙灘選手」有較大的下蹲緩衝角度,所以下蹲期緩衝最長,而下肢關節活動角度較大,也導致有較長的蹬伸期,能有效提升跳躍高度。二、三組受試者在起跳過程中,主要肌群的施力順序呈現相似的趨勢:右腳支撐期為股直肌與股內側肌;下蹲期為股內側肌與股直肌,但腓腸肌與股二頭肌有逐漸增加的趨勢;蹬伸期為腓腸肌、脛前肌與股二頭肌。「沙灘選手」在整個起跳過程中下肢五個肌群的活化程度皆大於另二組受試者,表示「沙灘選手」的下肢肌群在沙地起跳時有較佳的活化現象,且下肢肌群間施力順序有更佳的適應性。

    The two purposes of this study were: 1. To investigate the differences of take-off movement structure on sand surface between beach volleyball players and indoor volleyball players through 3D kinematics analyze. 2. To investigate the differences of lower limb muscles contraction in different phases of take-off movement between beach volleyball players and indoor volleyball players, through electromyography signal analysis. There were eight female beach volleyball players, eight female elite indoor volleyball players, and eight female intermediate indoor volleyball players as the participates for this study. Two Casio EX-FH20 digital cameras(210Hz) were synchronized with Noraxon EMG system(1000Hz) to collect the biomechanical parameters during the participates performing straddle jump movement on sand surface. Differences among 3 groups mean values of straddle jump performance were evaluated by one-way ANOVA and Scheffe-posteriori. Statistical significance was set at α=.05. The results showed that: 1. The “beach volleyball players” possess greater takeoff velocity and the greater jump height with a nearly vertical take-off angle. Also, the “beach volleyball players” possess the shortest approach steps which contain the movement of take-off; therefore, they possess the shortest right foot support phase. Moreover, the “beach volleyball players” possess the greater cushion angle of squating; therefore, they possess the longest downward phase. Their greater movable angle of the lower limbs also creates the longer upward phase, which enables a greater jump height. 2. During the take-off, the three participates' main muscles show the similar working sequence: Rectus Femoris and Vastus Medialis in the right foot support phase; Vastus Medialis and Rectus Femoris in the downward phase, with the increasing influence of Gastrocnemius and Biceps Femoris; Gastrocnemius, Tibialis Anterior and Biceps Femoris in the upward phase. During the whole take-off process of the “beach volleyball players”, their five muscles on the lower limbs are all activated to a greater extent than those of the other two groups. This fact shows that during the take-off, the “beach volleyball players” lower limb muscles are better activated with a better adaption on sand surface .

    口試委員與系主任簽字證書………………………………………………………I 授權書………………………………………………………………………………II 中文摘要…………………………………………………………………………III 英文摘要……………………………………………………………………………IV 謝 誌………………………………………………………………………………V 目 次………………………………………………………………………………VI 表 次………………………………………………………………………………X 圖 次………………………………………………………………………………XI 第壹章 緒論………………………………………………………………………1 第一節 前言………………………………………………………………………1 第二節 問題背景…………………………………………………………………2 第三節 研究問題…………………………………………………………………3 第四節 研究目的…………………………………………………………………4 第五節 研究範圍…………………………………………………………………4 第六節 操作型定義………………………………………………………………4 第七節 研究限制....……………………………………………………………7 第八節 研究重要性………………………………………………………………7 第貳章 文獻探討…………………………………………………………………9 第一節 跳躍動作肌肉收縮機轉之相關研究……………………………………9 第二節 肌電圖分析在運動技能研究之應用……………………………………13 一、肌電圖的應用原理……………………………………………………………13 二、起跳動作的肌電分析…………………………………………………………14 三、著地動作的肌電分析…………………………………………………………15 第三節 沙灘排球跳躍動作之相關研究…………………………………………16 第四節 文獻總結…………………………………………………………………26 第參章 研究方法與實驗步驟 …………………………………………………28 第一節 研究架構…………………………………………………………………28 第二節 研究對象…………………………………………………………………29 第三節 研究方法…………………………………………………………………29 一、運動學資料分析………………………………………………………29 二、肌電訊號分析…………………………………………………………36 三、攝影機與肌電系統的同步方式………………………………………41 第四節 實驗時間、地點與場地配置……………………………………………42 第五節 實驗儀器與設備…………………………………………………………42 第六節 實驗流程…………………………………………………………………44 第七節 資料處理與分析…………………………………………………………46 第肆章 結果………………………………………………………………………47 第一節 運動學分析………………………………………………………………47 一、動作分期持續時間……………………………………………………47 二、助跑階段………………………………………………………………48 三、起跳階段………………………………………………………………49 四、空中階段………………………………………………………………56 第二節 肌電訊號分析……………………………………………………………57 一、右腳支撐期……………………………………………………………57 二、下蹲期…………………………………………………………………58 三、蹬伸期…………………………………………………………………58 第伍章 討論與結論………………………………………………………………61 第一節 討論………………………………………………………………………61 一、不同等級選手身體重心參數與時宜之變化…………………………61 二、不同等級選手下肢關節角度與角速度之變化………………………66 三、不同等級選手下肢肌群在不同階段的活化程度……………………69 第二節 結論………………………………………………………………………72 參考文獻……………………………………………………………………………74 中文部分……………………………………………………………………………74 英文部分……………………………………………………………………………77 附錄一 受試者實驗同意書………………………………………………………84 附錄二 受試者基本資料…………………………………………………………85 附錄三 受試者實驗所得之運動生物力學參數…………………………………86

    中文部分:
    王紅英(1996)。優秀男排運動員沙灘排球扣球技術的運動學比較研究。上海體育學院學報,20(2),60-65。
    王令儀(2004)。不同型態蹲踞垂直跳下肢生物力學研究。未出版博士論文,國立台灣師範大學體育學系,台北市。
    李世明(2004)。沙灘排球上步扣球踏跳階段的時相特徵。北京體育大學學報,27(9),1264-1266。
    李世明、劉學貞、許全盛(2002)。沙灘排球與室内排球扣球起跳階段人體重心運動特徵的生物力學對比研究。中國體育科技,38(2),32-35。
    何維華(2006)。人體測量之運動生物力學應用:核磁共振技術建立人體肢段參數。台北:台灣運動生物力學學會。
    林世行(2008)。我國優秀女子沙灘排球運動員起跳環節肌電與運動學同步研究分析。天津體育學院學報,23(6),538-541。
    林光偉(2009)。不同高度深跳動作之下肢肌肉模擬。未出版碩士論文,國立體育學院運動科學研究所,桃園縣。
    林政東、劉宇、呂宏進(2000)。不同牽張幅度身跳練習對於SSC控制變數與運動表現之影響。大專體育,50,34-40。
    紀忠呈(2000)。男子排球選手不同持續跳躍方式之肌電反應分析研究。未出版碩士論文,國立體育學院教練研究所,桃園縣。
    吳慧君(1993)。運動性肌肉疲勞之肌電圖研究。中華體育季刊,2(7),77-85。
    徐國紅、葛春林、尹紅滿(2001)。沙灘排球訓練對我國女排運動員彈跳力影響機制的研究。體育科學,21(6),41-45。
    徐國紅、金健秋、尹洪滿(2001)。沙灘原地縱跳與硬地原地縱跳動力學機制的比較研究。中國體育科技,37(6),39-41。
    許太彥(2003)。國小學童不同高度赤腳著地之生物力學分析。未出版碩士論文,國立台灣師範大學體育學系,台北市。
    陳賢玲(2003)。不同負荷與牽張幅度的肌肉收縮轉換運動之運動表現與神經肌肉表現關係研究。未出版碩士論文,國立體育學院教練研究所,桃園縣。
    郭芳娟、李佩紜、施光庭、傅書毅(譯)(2008)。肌肉測試--徒手檢查技巧。台北市: Elservier Taiwan LLC。(Hislop, H. J. & Montgomery, J., 2008)
    郭士龍(2004)。排球扣球動作肌群肌電分析。未出版碩士論文,國立體育學院教練研究所,桃園縣。
    黃足生(2008)。國小學童赤腳與穿鞋著地於不同軟硬表面之生物力學分析。未出版碩士論文,國立台北教育大學體育學系,台北市。
    塗世帆(2009)。離心式等長收縮肌電圖訊號標準化方法及信度考驗。未出版碩士論文,國立體育學院運動保健科學研究所,桃園縣。
    張曉丹、葛春林(2008)。中國優秀沙灘排球運動員運動損傷流行病學研究。北京體育大學學報,31(2),211-213。
    程峻、黃瑞臻(2006)。沙灘排球跳躍動作分析。大專體育,86,152-155。
    彭逸坤 (2005)。沙灘排球運動技戰術之分析及實際應用研究。高雄市:高雄復文圖書出版社。
    彭逸坤(2002)。沙灘排球規則限定與爭議之分析—以二傳舉球的執球犯規為例。大專體育,61,27-29。
    廖德泰(2001)。男子沙灘排球與競技排球跳躍發球之運動學分析。未出版碩士論文,國立體育學院教練研究所,桃園縣。
    盧鼎厚、韓世真(1995)。提高淺蹲彈跳起跳能力的肌肉工作分析。北京體育大學學報,18(2),20-15。
    盧德明(2001)。運動生物力學測量方法。中國,北京市:北京體育大學出版社。
    鍾寶弘(1999)。垂直跳與跨步跳之生物力學分析比較。未出版碩士論文,國立體育學院教練研究所,桃園縣。

    外文部分:
    Aagaaard, H., Scavenius, M., & Jorgenson, U. (1997). An epidemiological analysis of the injury pattern in indoor and in beach volleyball. International Journal of Sports Medicine, 18, 217-221.
    Albert, M. (1991). Eccentric muscle training in sports and orthopedics. New York: Churchhill Livingstone.
    Aragon-Vargas, L. F., & Gross, M. (1997). Kinesiological factors in vertical jump performance: Difference within individuals. Journal of Applied Biomechanics, 13, 45-65.
    Astrand, P. O., Rodahl, K., Dahl, H. A., & Stromme, S. B. (2003). Textbook of Work Physiology: Physiological Bases of Exercise (4th ed). Champaign, IL: Human Kinetics.
    Bahr, R., & Reeser, J. (2003). Injuries among world-class professional beach volleyball players: The Federation Internationale de Volleyball beach volleyball injury study. American Journal of Sports Medicine, 31, 119-125.
    Barrett, R. S., Neal, R. J., & Roberts, L. J. (1988). The dynamic loading response of surface encountered in beach running. Journal of Science and Medicine in Sport, 1, 1-11.
    Bobbert, M. F., & van Ingen Schenau, G. J. (1988). Coordination in vertical jumping. Journal of Biomechanics, 21(3), 249-262.
    Bosco, C., Tarkka, I., & Komi, P. V. (1982). Effect of elastic energy and myoelectrical potentiation of triceps surae during stretch-shortening cycle exercise. International Journal of Sports Medicine, 3(3), 137-140.
    Bigland-Ritchie, B. (1981). EMG/force relations and fatigue of human voluntary contractions. Exercise and Sport Sciences Reviews, 9, 75-117.
    Bishop, D. (2003). A comparison between land- and sand-based tests for beach volleyball assessment. Journal of Sports Medicine and Physical Fitness, 43, 418–423.
    Cavagna, G. A., & Citterio, G. (1974). Effect of stretching on the elastic characteristics and contractile component of frog striated muscle. Journal of Physiology, 239, 1-14.
    Campanini, I., Merlo, A., Degola, P., Merletti, R., Vezzosi, G., & Farina, D. (2007). Effect of electrode location on EMG signal envelope in leg muscles during gait. Journal of Electromyography and Kinesiology, 17(4), 515-526.
    Couvillon, A. (2003). Sands of time. The history of beach volleyball. Vol: 2. Hermosa Beach, CA: Information Guides.
    Cram, J. R., Kasman, G. S., & Holtz, J. (1998). Introduction to surface electromyography. Gaithersburg, ML: Aspen Publication.
    Davies, S. E. H. (2002). Strength and power characteristics of South African beach volleyball players. South African Journal of Research in Sport, Physical Education, and Recreation, 29, 29-40.
    Davies, S. E. H., & Mackinnon, S. N. (2006). The energetics of walking on sand and grass at various speeds. Ergonomics, 49, 651–660.
    Dimitrova, N. A., Arabadzhiev, T. I., Hogrel, J. Y., & Dimitrov, G. V. (2007). Fatigue analysis of interference EMG signals obtained from biceps brachii during isometric voluntary contraction at various force level. Journal of Electromyography and Kinesiology, 19(2), 252-258.
    de Graaf, J. B., Bobbert, M. F., Tetteroo, W. E., & van Inger Schenau, G. J. (1987). Mechanical out put about the ankle in countermovement jump and jumps with extended knee. Human Movement Science, 6, 333-347.
    Fernández-Peña, E., Lucertini, F., & Ditroilo, M. (2008). A maximal isokinetic pedalling exercise for EMG normalization in cycling. Journal of Electromyography and Kinesiology, 19(3), 162-170.
    Garhammer, J., & Gregor, R. (1992). Propulsion forces as a function of intensity for weightlifting and vertical jumping. Journal of Applied Sport Science Research, 6, 129-134.
    Gregoire, L., Veeger, H. E., Huijing, P. A., & van Inger Schenau, G. J. (1984). Role of mono- and biarticular muscles in explosive movements. International Journal of Sports Medicine, 5, 301-305.
    Giatsis, G. (2001). Jumping quality and quantitative analysis of beach volleyball game. In S. Tokmakidis (ed.), 9th International Congress on Physical Education and Sport: supplement issue Vol. 28. Special topics in teamsports (p. 95). Komotini, Greece.
    Giatsis, G. (2003). The effect of changing the rules on score fluctuation and match duration in the FIVB women’s beach volleyball. International Journal of Performance Analysis in Sport, 3, 57-64.
    Giatsis, G., & Zetou, E. (2003). The influence of regulations changes on the fluctuation of score of beach volleyball games. Inquiries in Sport & Physical Education, 1, 43-48.
    Giatsis, G., Kollias, I., Panoutsakopoulos, V., & Papaiakovou, G. (2004). Biomechanical differences in elite beach-volleyball players in vertical squat jump on rigid and sand surface. Sports Biomechanics, 3(1), 145-158.
    Grgantov, Z., Katic, R., & Marelic, N. (2005). Effect of new rules on the correlation between situation parameters and performance in beach volleyball. Collegium Antropologicum, 29, 717-722.
    Hakkinen, K. (1993). Changes in physical fitness profile in female volleyball players during the competitive season. Journal of Sports Medicine and Physical Fitness, 33, 223-232.
    Herbley, C. L., & Wells, R. P. (1983). A work-energy approach to determine individual joint contributions to vertical jump performance. Eurpean journal of Applied Physiology, 50, 247-254.
    Homberg, S., & Papageorgiou, A. (1994). Handbook for Beach Volleyball. Aachen: Meyer and Meyer Verlag.
    Horita, T., Kitamura, K., & Kohno, N. (1991). Body configuration and joint moment analysis during standing long jump in 6-yr-old children and adult males. Medicine and science in sports and exercise, 23(9), 1068-1077.
    Luhtanen, P., & Komi, P. (1978). Segmental contribution to forces in vertical jump. European Journal of Applied Physiology, 38, 181-188.
    Mirka, G. A. (1991). The quantification of EMG normalization error. Ergonomics, 34(3), 343-352.
    Muramatsu, S., Fukudome, A., Miyama, M., Arimoto, M., & Kijima, A. (2006). Energy expenditure in maximal jumps on sand. Journal of Physiology and Anthropology, 25, 59-61.
    Oliveira, A. S. C. & Goncalves, M. (2007). EMG amplitude and frequency parameters of muscular activity: Effect of resistance training based on electromyography fatigue threshold. Journal of Electromyography and Kinesiology, 19(2), 295-303.
    Papaiakovou, G., Nikodelis, T., Panoutsakopoulos, V., & Kollias, I. (2003). Effect of initial posture upon vertical squat jump dynamic and kinematic characteristics of subjects with limited ankle joint dorsi flexion. Journal of Human Movement Studies, 44, 311-322.
    Paulseth, S., Martinovich, J., Scira, J., & Sherman, S. (2002). A study of training programs, types and incidences of injuries in elite male beach volleyball players. International Journal of Volleyball Research, 5, 6-12.
    Pinnington, H. C., & Dawson, B. (2001). The energy cost of running on grass compared to soft dry beach sand. Journal of Science and Medicine in Sport, 4, 416–430.
    Kais, K., & Raudsepp, L. (2004). Cognitive and somatic anxiety and self-confidence in athletic performance of beach volleyball. Perceptual and Motor Skills, 98, 439-449.
    Komi, P. V. (1984). Physiological and biomechanical correlates of muscle function : effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sports Sciences Reviews, 12, 81-121.
    Kiraly, K., & Shewman, B. (1999). Beach Volleyball. Champaign, IL: Human Kinetics.
    Suda, E. Y., Amorim, C. F., & Sacco, I. C. N. (2009). Influence of ankle functional instability on the ankle electromyography during landing after volleyball blocking. Journal of Electromyography and Kinesiolog, 19(2), 84-93.
    Tilp, M. (2006). Simulations of individual squat jumps on compliant surfaces. In H. Hoppeler, T. Reilly, E. Tsolakidis, L. Gfeller, and S. Klossner (Eds.), European College of Sport Science[Abstract]. Book of Abstracts (p. 365). Lausanne, Switzerland: 2006 European College of Sport Science Congress.
    Tilp, M., Wagner, H., & Müller, E. (2008). Differences in 3D kinematics between volleyball and beach volleyball spike movements. Sports Biomechanics, 7(3), 386-397.
    van Ingen Schenau, G. J. (1989). From rotation to translation: Constraints of multi-joint movements and the unique action of bi-articular muscles. Human Movement Sciences, 8(4), 301-337.
    Vetter, K., & Nicol, K. (2004). Zum Einfluss des Sanduntergrunds auf die Sprungleistung im Beach-Volleyball. Leistungssport, 34(2), 57–62.
    Viitasalo, J. T. & Bosco, C. (1982). Electromechanical behavior of human muscles in vertical jumps. European Journal of Applied Physiology and Occupation Physiology, 48(2), 253-261.
    Wilk, K.E., Voight, M. L., Keirns, M. A., Gambetta, V., Andrews, J. R., & Dillman, C.J. (1993). Stretch-shortening drill for the upper extremities: Theory and clinical application. Journal of Orthopedic and Sports Physical Therapy, 17(5), 225-239.
    Young, W., Wilson, G., & Byrne, C. (1999). Relationship between strength qualities and performance in standing and run-up vertical jumps. Journal of Sports Medicine and Physical Fitness, 39, 285-293.

    下載圖示
    QR CODE