研究生: |
馮一介 Feng, Yi Jie |
---|---|
論文名稱: |
渦旋光增強奈米矽線與二硫化鉬場效電晶體之光導電度 Twisted Light-Enhanced Photoconductivity in Silicon Nanowires and Molybdenum Disulfide Field Effect Transistor |
指導教授: |
藍彥文
Lan, Yann-Wen 陸亭樺 Lu, Ting-Hua |
口試委員: |
藍彥文
Lan, Yann-Wen 陸亭樺 Lu, Ting-Hua 黃斯衍 Huang, Ssu-Yen |
口試日期: | 2022/06/30 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 渦旋光 、軌道角動量的光 、光感測器 、光導與光閘效應 、矽奈米線 、二硫化鉬 |
英文關鍵詞: | Twisted light, Orbital angular momentum of light, Photodetector, PC and PG effect, Silicon nanowires, Molybdenum Disulfide |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200700 |
論文種類: | 學術論文 |
相關次數: | 點閱:279 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光可以帶有自旋與軌道角動量,分別體現於圓偏振以及渦旋光上。軌道角動量的光在理論上擁有無限的自由度,預期可以應用於光通訊的領域。此外,光額外的軌道角動量會引發電子躍遷形式的改變,進而影響電子激發至導帶的濃度,改變光電流的大小。在這篇論文中,Silicon Nanowires以及MoS2所製成的場效應電晶體被用來感測光的軌道角動量。電性上的結果顯現,光電流隨著軌道角動量的變大而上升;該現象,可以被歸因於軌道角動量的光增強了材料對光的吸收率,使得光電流來源於光導效應(Photoconductive Effect)和光閘效應(Photogating Effect)的現象被提高。不同軌道角動量的光所引發之光電流隨著光強的變化,亦證明了該現象。透過這份研究,可以預期除了光強與頻率,未來可以把光的軌道角動量當作一個額外的自由度來去調控材料的光電流。
Light can possess spin and orbital angular momentum (OAM), which can be manifested in circularly polarized light and twisted light (TL), respectively. TL is expected to be applicable in the field of Opto-Communication owing to its theoretically infinite degree of freedom. The extra angular momentum of light will induce different transition paths, impacting the concentration of electrons in the conduction band, which leads to a potential application in modulating the electrical current. In this thesis, phototransistors made from Silicon Nanowires and MoS2 are used to detect the OAM of light. We have observed a progressively increasing photocurrent when incremented the light’s OAM; such phenomenon is attributed to the photoconductive and photogating effects due to enhancing absorption of TL. In photocurrent’ power dependence as a function of OAM light, we have noticed the linear power dependence in plane wave light, but sublinear behavior when using TL, indicating the density of holes in trap states is increased. Through this research, a further application can be developed by utilizing the OAM of light as a degree of freedom to control the signal from photodetectors.
1 Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices. (Wiley, 2006).
2 Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8, 497-501, doi:10.1038/nnano.2013.100 (2013).
3 Yin, Z. et al. Single-Layer MoS2 Phototransistors. ACS Nano 6, 74-80, doi:10.1021/nn2024557 (2012).
4 Hattori, H., Umeno, M., Jimbo, T., Fujitani, O. & Miki, S. Photon Drag Effect in Germanium. Japanese Journal of Applied Physics 11, 1663-1669, doi:10.1143/jjap.11.1663 (1972).
5 Baek, E. et al. Negative Photoconductance in Heavily Doped Si Nanowire Field-Effect Transistors. Nano Lett 17, 6727-6734, doi:10.1021/acs.nanolett.7b02788 (2017).
6 Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev 44, 3691-3718, doi:10.1039/c5cs00106d (2015).
7 Wu, J. Y. et al. Broadband MoS2 Field-Effect Phototransistors: Ultrasensitive Visible-Light Photoresponse and Negative Infrared Photoresponse. Adv Mater 30, doi:10.1002/adma.201705880 (2018).
8 Cha, S. et al. Generation, transport and detection of valley-locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat Nanotechnol 13, 910-914, doi:10.1038/s41565-018-0195-y (2018).
9 Quereda, J. et al. Symmetry regimes for circular photocurrents in monolayer MoSe2. Nat Commun 9, 3346, doi:10.1038/s41467-018-05734-z (2018).
10 Ivchenko, E. L. Circular photogalvanic effect in nanostructures. Physics-Uspekhi 45, 1299-1303, doi:10.1070/PU2002v045n12ABEH001329 (2002).
11 Mikheev, G. M., Saushin, A. S., Styapshin, V. M. & Svirko, Y. P. Interplay of the photon drag and the surface photogalvanic effects in the metal-semiconductor nanocomposite. Sci Rep 8, 8644, doi:10.1038/s41598-018-26923-2 (2018).
12 Isiyaku, A. & Ghoshal, S. K. PHOTOLUMINESCENCE SPECTRAL FEATURES OF SILICON NANOWIRES. Jurnal Teknologi 78, 153–158, doi:10.11113/jt.v78.7835 (2016).
13 Simbulan, K. B. et al. Twisted Light-Enhanced Photovoltaic Effect. ACS Nano 15, 14822-14829, doi:10.1021/acsnano.1c04902 (2021).
14 Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Physical Review B 85, doi:10.1103/PhysRevB.85.205302 (2012).
15 Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288-290, doi:10.1364/OL.11.000288 (1986).
16 Hecht, E. Optics. (Pearson, 2016).
17 Padgett, M., Courtial, J. & Allen, L. Light’s Orbital Angular Momentum. Physics Today 57, 35-40, doi:10.1063/1.1768672 (2004).
18 Beth, R. A. Mechanical Detection and Measurement of the Angular Momentum of Light. Physical Review 50, 115-125, doi:10.1103/PhysRev.50.115 (1936).
19 Allen, L., Beijersbergen, M. W., Spreeuw, R. J. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185-8189, doi:10.1103/physreva.45.8185 (1992).
20 Fickler, R., Campbell, G., Buchler, B., Lam, P. K. & Zeilinger, A. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc Natl Acad Sci U S A 113, 13642-13647, doi:10.1073/pnas.1616889113 (2016).
21 Willner, A. E., Pang, K., Song, H., Zou, K. & Zhou, H. Orbital angular momentum of light for communications. Applied Physics Reviews 8, doi:10.1063/5.0054885 (2021).
22 Kobayashi, H., Nonaka, K. & Kitano, M. Helical mode conversion using conical reflector. Opt Express 20, 14064-14074, doi:10.1364/OE.20.014064 (2012).
23 Carpentier, A. V., Michinel, H., Salgueiro, J. R. & Olivieri, D. Making optical vortices with computer-generated holograms. American Journal of Physics 76, 916-921, doi:10.1119/1.2955792 (2008).
24 Ma, J., Li, P. & Gu, Y. Characteristics of Spiral Patterns Formed by Coaxial Interference between Two Vortex Beams with Different Radii of Wavefront Curvatures. Photonics 8, doi:10.3390/photonics8090393 (2021).
25 Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics 3, doi:10.1364/aop.3.000161 (2011).
26 Longman, A. & Fedosejevs, R. Optimal Laguerre-Gaussian modes for high-intensity optical vortices. J Opt Soc Am A Opt Image Sci Vis 37, 841-848, doi:10.1364/JOSAA.389031 (2020).
27 Zhang, K., Wang, Y., Yuan, Y. & Burokur, S. N. A Review of Orbital Angular Momentum Vortex Beams Generation: From Traditional Methods to Metasurfaces. Applied Sciences 10, doi:10.3390/app10031015 (2020).
28 Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nature Photonics 14, 498-503, doi:10.1038/s41566-020-0623-z (2020).
29 Zhao, Z. High Precision Optical Wavefront Generation Using Liquid Crystal Spatial Light Modulator (LC-SLM). (2021).
30 Rubano, A., Cardano, F., Piccirillo, B. & Marrucci, L. Q-plate technology: a progress review [Invited]. Journal of the Optical Society of America B 36, doi:10.1364/josab.36.000d70 (2019).
31 Slussarenko, S. et al. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express 19, 4085-4090, doi:10.1364/OE.19.004085 (2011).
32 He, H., Friese, M. E., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75, 826-829, doi:10.1103/PhysRevLett.75.826 (1995).
33 Voogd, R. J., Singh, M., Pereira, S. F., van de Nes, A. S. & Braat, J. J. M. in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing. FTuG14 (Optica Publishing Group).
34 Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448-5456, doi:10.1364/OPEX.12.005448 (2004).
35 Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Physics 3, 305-310, doi:10.1038/nphys607 (2007).
36 He, H., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical Particle Trapping with Higher-order Doughnut Beams Produced Using High Efficiency Computer Generated Holograms. Journal of Modern Optics 42, 217-223, doi:10.1080/09500349514550171 (1995).
37 Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photonics 5, 343-348, doi:10.1038/nphoton.2011.81 (2011).
38 Simpson, N. B., Dholakia, K., Allen, L. & Padgett, M. J. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52-54, doi:10.1364/OL.22.000052 (1997).
39 Liu, C. et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci Appl 10, 123, doi:10.1038/s41377-021-00551-4 (2021).
40 Buscema, M. et al. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13, 358-363, doi:10.1021/nl303321g (2013).
41 Long, M., Wang, P., Fang, H. & Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Advanced Functional Materials 29, doi:10.1002/adfm.201803807 (2018).
42 Koppens, F. H. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol 9, 780-793, doi:10.1038/nnano.2014.215 (2014).
43 Shih, F. Y. et al. Environment-insensitive and gate-controllable photocurrent enabled by bandgap engineering of MoS2 junctions. Sci Rep 7, 44768, doi:10.1038/srep44768 (2017).
44 Furchi, M. M., Polyushkin, D. K., Pospischil, A. & Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett 14, 6165-6170, doi:10.1021/nl502339q (2014).
45 Wolkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. & Delerue, C. Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen. Physical Review Letters 82, 197-200, doi:10.1103/PhysRevLett.82.197 (1999).
46 Sakurai, T. & Sugano, T. Theory of continuously distributed trap states at Si‐SiO2interfaces. Journal of Applied Physics 52, 2889-2896, doi:10.1063/1.329023 (1981).
47 Das, K., Mukherjee, S., Manna, S., Ray, S. K. & Raychaudhuri, A. K. Single Si nanowire (diameter </= 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity. Nanoscale 6, 11232-11239, doi:10.1039/c4nr03170a (2014).
48 Grinberg, A. Theory of the Photoelectric and Photomagnetic Effect Produce by Light Pressure. Journal of Experimental and Theoretical Physics - J EXP THEOR PHYS 31 (1970).
49 Saushin, A. S., Mikheev, K. G., Styapshin, V. M. & Mikheev, G. M. Direct measurement of the circular photocurrent in the Ag/Pd nanocomposites. Journal of Nanophotonics 11, doi:10.1117/1.Jnp.11.032508 (2017).
50 Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-498, doi:10.1038/nnano.2012.96 (2012).
51 Eginligil, M. et al. Dichroic spin-valley photocurrent in monolayer molybdenum disulphide. Nat Commun 6, 7636, doi:10.1038/ncomms8636 (2015).
52 Yuan, H. et al. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat Nanotechnol 9, 851-857, doi:10.1038/nnano.2014.183 (2014).
53 Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726-729 (2015).
54 Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763-767, doi:10.1126/science.aba9192 (2020).
55 Watzel, J. & Berakdar, J. Centrifugal photovoltaic and photogalvanic effects driven by structured light. Sci Rep 6, 21475, doi:10.1038/srep21475 (2016).
56 Sordillo, L. A., Mamani, S., Sharonov, M. & Alfano, R. R. The interaction of twisted Laguerre-Gaussian light with a GaAs photocathode to investigate photogenerated polarized electrons. Applied Physics Letters 114, doi:10.1063/1.5078503 (2019).
57 Schmiegelow, C. T. et al. Transfer of optical orbital angular momentum to a bound electron. Nat Commun 7, 12998, doi:10.1038/ncomms12998 (2016).
58 Ji, Q., Zhang, Y., Zhang, Y. & Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem Soc Rev 44, 2587-2602, doi:10.1039/c4cs00258j (2015).
59 Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate. Small 8, 966-971, doi:10.1002/smll.201102654 (2012).
60 Ling, X. et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14, 464-472, doi:10.1021/nl4033704 (2014).
61 Lee, J.-K., Sung, H., Jang, M. S., Yoon, H. & Choi, M. Reliable doping and carrier concentration control in graphene by aerosol-derived metal nanoparticles. Journal of Materials Chemistry C 3, 8294-8299, doi:10.1039/c5tc01443c (2015).
62 Nguyen, L.-N., Chang, W.-H., Chen, C.-D. & Lan, Y.-W. Superior phototransistors based on a single ZnO nanoparticle with high mobility and ultrafast response time. Nanoscale Horizons 5, 82-88, doi:10.1039/c9nh00299e (2020).
63 Kwak, J. Y. Absorption Coefficient estimation of thin MoS2 film using Attenuation of Silicon Substrate Raman Signal. Results in Physics 13, 102202, doi:10.1016/j.rinp.2019.102202 (2019).
64 Island, J. O., Blanter, S. I., Buscema, M., van der Zant, H. S. & Castellanos-Gomez, A. Gate Controlled Photocurrent Generation Mechanisms in High-Gain In(2)Se(3) Phototransistors. Nano Lett 15, 7853-7858, doi:10.1021/acs.nanolett.5b02523 (2015).
65 Zhao, Q. et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Materials Horizons 7, 252-262, doi:10.1039/c9mh01020c (2020).
66 Quinteiro, G. F. & Tamborenea, P. I. Theory of the optical absorption of light carrying orbital angular momentum by semiconductors. EPL (Europhysics Letters) 85, doi:10.1209/0295-5075/85/47001 (2009).
67 Lee, I. et al. Photoinduced Tuning of Schottky Barrier Height in Graphene/MoS2 Heterojunction for Ultrahigh Performance Short Channel Phototransistor. ACS Nano 14, 7574-7580, doi:10.1021/acsnano.0c03425 (2020).
68 Lee, J. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat Commun 8, 14734, doi:10.1038/ncomms14734 (2017).
69 Roy, K. et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8, 826-830, doi:10.1038/nnano.2013.206 (2013).
70 Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun 4, 1624, doi:10.1038/ncomms2652 (2013).
71 Wu, H. et al. Multifunctional Half-Floating-Gate Field-Effect Transistor Based on MoS2-BN-Graphene van der Waals Heterostructures. Nano Lett 22, 2328-2333, doi:10.1021/acs.nanolett.1c04737 (2022).