簡易檢索 / 詳目顯示

研究生: 張琇琄
Hsiu-Chuan Chang
論文名稱: 合成硫酸化N-乙醯乳醣胺及其衍伸物
Synthesis of N-acetyl Lactosamine Sulfates and Analogues
指導教授: 姚清發
Yao, Ching-Fa
林俊宏
Lin, Chun-Hung
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 乙醯乳糖胺硫酸化醣基化預活化
英文關鍵詞: N-acetyllactosamine, sulfation, glycosylation., pre-activation
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N-乙醯乳醣胺(N-acetyllactosamine, Gal-b-1,4-GlcNAc, LacNAc)和其衍生物 (Gal-1,3-GlcNAc) 通常以雙醣的重覆單元體存在多醣體 (N-glycans) 的末端,這類化合物在生物活性測試中發現可以抑制B淋巴細胞分化成分泌抗體的漿細胞,間接證明了半乳糖凝集素參與B淋巴細胞分化的過程。最近,本實驗室研究發現:硫酸化N-乙醯乳醣胺及其衍生物對半乳糖結合能力有顯著提升,因此,本篇論文將著重在硫酸化N-乙醯乳醣胺衍生物的合成。合成此類化合物將涉及化學合成中保護基的修飾、醣基化反應、選擇性去保護與硫酸化。依據實驗室先前發展的構築體進行醣予體與醣受體的製備,使用預活化(pre-activation)方法於醣基化反應,並利用活化試劑 Ph2SO-Tf2O,最後可以得到高產率硫酸化 N-乙醯乳醣胺或其衍生物。

    N-Acetyllactosamine (Gal-b-1,4-GlcNAc, LacNAc) and its 1,3-analogue often exist as repeating disaccharides resided at the non-reducing terminus of N-glycans. These carbohydrates are associated with numerous biological activities. For example, they are known to interact with various types of galectins for the immune-activity of B-cells. Recently the incorporation of sulfate groups to the hydroxyl group(s) was observed to greatly enhance the binding interaction with a variety of proteins. This thesis research aims at the synthesis of these sulfated Gal-1,3-GlcNAc, LacNAc and analogues in order for the purpose of systematic investigation. These target disaccharides were synthesized by the reactions steps of protecting group manipulations, glycosylation, selective deprotection and sulfation. We followed the previously established method to prepare the building blocks of Gal donor and GlcNAc-acceptor. The pre-activation method by using diphenyl sulfoxide-Tf2O was found to be suitable for formation of the desired b-1,3-linkage with satisfying high yields.

    縮寫對照表 i 中文摘要 iii 英文摘要 iv 目錄 v 圖目錄 vi 表目錄 vii 流程目錄 vii 第一章 緒論 1.1 前言 1 1.2 文獻回顧 4 1.3 本文研究目標 11 第二章 結果與討論 2.1 逆合成分析 12 2.2 合成醣予體與醣受體 15 2.3 利用化學法合成N-乙醯乳醣胺雙醣體 18 2.4 在雙醣體還原端連接1-疊氮(N3)正己醇醣基 23 2.5 保護反應與硫酸化反應 28 2.6 討論 33 第三章 結論 36 第四章 實驗部份 38 第五章 參考文獻 68 第六章 光譜附錄 73

    1. Hughes, R. C., Galectins as modulators of cell adhesion. Biochimie 2001, 83, 667-676.
    2. Hikita, C.; Vijayakumar, S.; Takito, J.; Erdjument-Bromage, H.; Tempst, P.; Al-Awqati, Q., Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J. Cell. Biol. 2000, 151, 1235-1246.
    3. Imberty, A.; Lortat-Jacob, H.; Perez, S., Structural view of glycosaminoglycan-protein interactions. Carbohydr. Res. 2007, 342, 430-439.
    4. Kjellen, L.; Lindahl, U., Proteoglycans - Structures and Interactions. Annu. Rev. Biochem. 1991, 60, 443-475.
    5. Capila, I.; Linhardt, R. J., Heparin - Protein interactions. Angew. Chem. Int. Ed. Engl. 2002, 41, 391-412.
    6. Lu, L. D.; Shie, C. R.; Kulkarni, S. S.; Pan, G. R.; Lu, X. A.; Hung, S. C., Synthesis of 48 disaccharide building blocks for the assembly of a heparin and heparan sulfate oligosaccharide library. Org. Lett. 2006, 8, 5995-5998.
    7. Tsai, C. M.; Chiu, Y. K.; Hsu, T. L.; Lin, I. Y.; Hsieh, S. L.; Lin, K. I., Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J .Immunol. 2008, 181, 4570-4579.
    9. Endo, A.; Iida, M.; Fujita, S.; Numata, M.; Sugimoto, M.; Nunomura, S., Total synthesis of sulfated Le(a) pentaosyl ceramide. Carbohydr. Res. 1995, 270, C9-C13.
    10. Liao, L.; Auzanneau, F. I., The amide group in N-acetylglucosamine glycosyl acceptors affects glycosylation outcome. J. Org. Chem. 2005, 70, 6265-73.
    11. Rosch, A.; Kunz, H., Highly regioselective synthesis of a 3-O-sulfonated arabino Lewis(a) asparagine building block suitable for glycopeptide synthesis. Carbohydr. Res. 2006, 341, 1597-1608.
    12. Yu, H. N.; Furukawa, J.; Ikeda, T.; Wong, C. H., Novel efficient routes to heparin monosaccharides and disaccharides achieved via regio- and stereoselective glycosidation. Org. Lett. 2004, 6, 723-726.
    13. Jayaprakash, K. N.; Fraser-Reid, B., One-pot chemo-, regio-, and stereoselective double-differential glycosidation mediated by lanthanide triflates. Org. Lett. 2004, 6, 4211-4214.
    14. Bourne, Y.; Bolgiano, B.; Liao, D. I.; Strecker, G.; Cantau, P.; Herzberg, O.; Feizi, T.; Cambillau, C., Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat. Struct. Biol. 1994, 1, 863-870.
    15. Crich, D.; Dudkin, V., Why are the hydroxy groups of partially protected N-acetylglucosamine derivatives such poor glycosyl acceptors, and what can be done about it? A comparative study of the reactivity of N-acetyl-, N-phthalimido-, and 2-azido-2-deoxy-glucosamine derivatives in glycosylation. 2-Picolinyl ethers as reactivity-enhancing replacements for benzyl ethers. J. Am. Chem. Soc. 2001, 123, 6819-6825.
    16. Xue, J.; Khaja, S. D.; Locke, R. D.; Matta, K. L., A concise synthesis of N-trichloroethoxycarbonyl lactosamine trichloroacetimidate donor and its application in the synthesis of Gal(beta 1-4)GIcNAc(beta 1-3)L-Fuc(alpha-OAll). Synlett. 2004, 4 861-865.
    17. Garcia, B. A.; Gin, D. Y., Dehydrative glycosylation with activated diphenyl sulfonium reagents. Scope, mode of C(1)-hemiacetal activation, and detection of reactive glycosyl intermediates. J. Am. Chem. Soc. 2000, 122, 4269-4279.
    18. Koeller, K. M.; Wong, C. H., Chemoenzymatic synthesis of sialyl-trimeric-Lewis x. Chemistry 2000, 6, 1243-1251.
    19. Paulsen, H., Advances in Selective Chemical Syntheses of Complex Oligosaccharides. Angew. Chem. Int. Ed. Engl. 1982, 21, 155-173.
    20. Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L., Experimental and theoretical evidence of through-space electrostatic stabilization of the incipient oxocarbenium ion by an axially oriented electronegative substituent during glycopyranoside acetolysis. J. Org. Chem. 1997, 62, 7597-7604.
    21. de la Fuente, J. M.; Penades, S., Synthesis of Le(x)-neoglycoconjugate to study carbohydrate-carbohydrate associations and its intramolecular interaction. Tetrahedron-Asymmetry 2002, 13, 1879-1888.
    22. Wang, R.; Wong, C. H., Synthesis of sialyl Lewis X mimetics: Use of O-alpha-fucosyl-(1R, 2R)-2-aminocyclohexanol as core structure. Tetrahedron Lett. 1996, 37, 5427-5430.
    23. Palme, M.; Vasella, A., O-(1-Phenyl-1h-Tetrazol-5-Yl) Glycosides - Alternative Synthesis and Transformation into Glycosyl Fluorides. Helv. Chim. Acta. 1995, 78, 959-969.
    24. Kolakowski, R. V.; Shangguan, N.; Barlett, K.; Williams, L. J., Mechanism of thio acid/azide amidation and application to thioamide synthesis. Abstr. Pap. Am. Chem. Soc. 2004, 228, U135-U135.
    25. Shangguan, N.; Katukojvala, S.; Greenburg, R.; Williams, L. J., The reaction of thio acids with azides: A new mechanism and new synthetic applications. J. Am. Chem. Soc. 2003, 125, 7754-7755.
    26. Benakli, K.; Zha, C. X.; Kerns, R. J., Oxazolidinone protected 2-amino-2-deoxy-D-glucose derivatives as versatile intermediates in stereoselective oligosaccharide synthesis and the formation of alpha-linked glycosides. J. Am. Chem. Soc. 2001, 123, 9461-9462.
    27. Dinkelaar, J.; Codee, J. D. C.; van den Bos, L. J.; Overkleeft, H. S.; van der Marel, G. A., Synthesis of hyaluronic acid oligomers using Ph2SO/Tf2O-mediated glycosylations. J. Org. Chem. 2007, 72, 5737-5742.
    28. Pratt, M. R.; Bertozzi, C. R., Syntheses of 6-sulfo sialyl Lewis X glycans corresponding to the L-selectin ligand "Sulfoadhesin". Org. Lett. 2004, 6, 2345-2348.
    29. Marcaurelle, L. A.; Pratt, M. R.; Bertozzi, C. R., Synthesis of thioether-linked analogues of the 2,3-sialyl-TF and MECA-79 antigens: Mucin-type glycopeptides associated with cancer and inflammation. Chembiochem. 2003, 4, 224-228.

    無法下載圖示 本全文未授權公開
    QR CODE