研究生: |
張惟傑 Chang, Wei-Chieh |
---|---|
論文名稱: |
混合過渡金屬 (鉻、鐵) 之十五族 (銻、鉍) 錯合物與含十六族 (硫、硒、碲) 三鐵羰基汞銅陰陽離子聚合物之合成與其反應性及物性之探討 Group 15 (Sb, Bi) Containing Mixed Transition Metal (Cr, Fe) Carbonyl Complexes and EFe3Hg (E = S, Se, Te) Cluster-based Cation-anion Cu Polymers: Synthesis, Reactivities, and Physical Properties |
指導教授: |
謝明惠
Shieh, Ming-Huey |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 銻 、鉍 、鉻 、鐵 、硫 、硒 、碲 、汞 、銅 、聚合物 |
英文關鍵詞: | Antimony, Bismuth, Chromium, Iron, Sulfur, Selenium, Tellurium, Mercury, Copper, Polymer |
DOI URL: | https://doi.org/10.6345/NTNU202202337 |
論文種類: | 學術論文 |
相關次數: | 點閱:239 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
E‒Cr‒Fe 系統 (E = Sb, Bi)
過去已發表之平面化合物 [E{Cr(CO)5}3]‒ (E = Sb, 1; Bi, 2) 皆具有缺電子之不飽和性質,因此本研究進一步針對其路易士酸性、與親核試劑反應的差異進行探討。研究結果顯示,化合物 1 能與極弱親核試劑水 (H2O) 反應得路易士加成物 [(HO)Sb{Cr(CO)5}3]2‒ (1-OH),但化合物 2 則無反應。有趣的是,由高解析 X-ray 電子能譜 (HR-XPS) 得知化合物 1 之中心 Sb 原子氧化態為 0 價。當 2 與 [HFe(CO)4]‒ 反應時,可得四面體化合物 [{Fe(CO)4}Bi{Cr(CO)5}3]3‒ (2-Fe)。進一步以 2-Fe 與 [FeCp2][PF6] 反應會經過一中間物 [Bi{Cr(CO)5}2{Fe(CO)4}]‒ (3) 而後斷裂重組生成穩定產物 [{Cr(CO)5}2Bi2{Fe(CO)3}3]2‒ (4)。另一方面,化合物 1 與 [HFe(CO)4]‒ 反應則生成 [(H)Sb{Cr(CO)5}2{Fe(CO)4}]2‒ (1-Fe) 與 [(H)Sb{Cr(CO)5}3]2‒ (1-H) 之混合物。此外,當 1-Fe 與過量 HBF4 於室溫下反應,可得耦合 (coupling) 產物 [FSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (6)。有趣的是,若將 1-Fe 與 1 當量 [CPh3][BF4] 於 ‒30 oC 下反應可得 [Sb2{Cr(CO)5}4{Fe(CO)4}2]2‒ (7)。若 1-Fe 與 [CPh3][BF4] 於室溫下反應,並提高 [CPh3][BF4] 之當量數,則可得到 6 與極少量 [(HO)Sb2{Cr(CO)5}3{Fe(CO)4}2]‒ (8)。推測化合物 7 為中間物,可進一步生成 F 或 OH 取代之化合物 6 與 8。最後,本研究藉由電化學及 density functional theory (DFT) 理論計算輔佐,探討此系列反應之機制及氧化還原行為。
E‒Fe-Hg-Cu 系統 (E = S, Se)
將 [PPh]4[SeFe3(CO)9] 及 Hg(OAc)2 以當量比 1: 2 於 −30 oC MeCN 中進行反應,可得 Hg 原子橋接兩個 SeFe3 團簇物之化合物 [PPh4]2[{(μ3-Se)Fe3(CO)9}Hg{(μ4-Se)Fe3(CO)9}] ([PPh4]2[2])。[PPh4]2[2] 進一步與過去已發表之銅一維聚合物 [{Cu(MeCN)2(dpy)}{BF4}]n (1) 利用液態輔助研磨 (liquid-assisted grinding) 方式進行陰離子交換反應,可形成團簇物 2 之結構異構物嵌入含混合一維及二維銅陽離子的聚合物 [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{(3-Se)Fe3(CO)9}2Hg}]n (4)。若以 [Et4N]2[{(3-S)Fe3(CO)9}2Hg] 與聚合物 1 利用研磨進行陰離子交換反應後,結晶可得含硫−銅進一步鍵結之配位聚合物 [{Cu(dpy)(MeCN)}2{(4-S)Fe3(CO)9}2Hg]n (3')。此外,進一步透過高解析 X-ray 電子能譜 (HR-XPS) 及 X-ray 吸收近邊緣結構光譜 (XANES),探討 EFe3Hg-Cu (E = S, Se, Te) 系列聚合物之銅原子氧化態。並由晶體固態堆疊圖發現,此系列聚合物皆具有分子間 C‒H…O 氫鍵,進一步證實電子傳遞之現象。
E‒Cr‒Fe system (E = Sb, Bi)
We focus on the difference of Lewis acidity and reactivity between the reported 4-center, 6-conjugated unsaturated trigonal-planar complex, [E{Cr(CO)5}3]– (E = Sb, 1; Bi, 2). When 1 was reacted with weak nucleophile H2O, Lewis adduct [(HO)Sb{Cr(CO)5}3]2‒ (1-OH) was formed. However, 2 was unreacted with H2O, showing the greater Lewis acidity of 1 than that of 2, which was further supported by DPV studies. Since the oxidation state of Bi in 2 was previously determined to be +3, the oxidation state of Sb in 1 was assigned in 0 by X-ray photoelectron spectroscopy (XPS). The strong Lewis acidity of 1 may be attributed to its electronic unsaturated character, even if the Sb atom was electron-rich. In addition, when 2 was treated with [HFe(CO)4]–, the tetrahedral complex [{Fe(CO)4}Bi{Cr(CO)5}3]3– (2-Fe) was obtained which can further react with [FeCp2][PF6] to produce [{Cr(CO)5}2Bi2{Fe(CO)3}3]2‒ (4) via a mixrd Cr–Fe trigonal-planar intermediate [Bi{Cr(CO)5}2{Fe(CO)4}]– (3). On the other hand, similar reaction of 1 with [HFe(CO)4]– led to the formation of a mixture of [(H)Sb{Cr(CO)5}2{Fe(CO)4}]2‒ (1-Fe) and [(H)Sb{Cr(CO)5}3]2‒ (1-H). This distinct reaction pattern was deduced to the different electronegativity and atomic size between the Sb and Bi atoms. Interestingly, the treatment of the 1-Fe with excess HBF4 at room temperature afforded the coupling product [FSb2{Cr(CO)5}3{Fe(CO)4}2]‒ (6). While the deprotonation of 1-Fe with 1 equivalent of [CPh3][BF4] at ‒30 oC gave rise to the complex [Sb2{Cr(CO)5}4{Fe(CO)4}2]2‒ (7), the treatment with 1.5 equivalents of [CPh3][BF4] resulted in the formation of a mixture of [(HO)Sb2{Cr(CO)5}3{Fe(CO)4}2]‒ (8) and 6. Finally, the reaction mechanism and electronic structures of 1 and 2 were elucidated with the aid of density functional theory (DFT) calculations.
E‒Fe-Hg-Cu system (E = S, Se)
When [PPh4]2[SeFe3(CO)9] was treated with 2 equiv of Hg(OAc)2 in MeCN solution at –30 oC, the Hg-bridged di-SeFe3 cluster [PPh4]2[{(μ3-Se)Fe3(CO)9}Hg{(μ4-Se)Fe3(CO)9}] ([PPh4][2]) was obtained. Furthermore, the reaction of [PPh4][2] with [{Cu(MeCN)2(dpy)}{BF4}]n (1) via liquid-assisted grinding (LAG) led to the formation of [{Cu(dpy)(MeCN)2}{Cu(dpy)1.5(MeCN)}{{(3-Se)Fe3(CO)9}2Hg}]n (4). Similar reaction of [Et4N]2[{SFe3(CO)9}2Hg] with 1 via LAG produced structural isomers [{Cu(dpy)(MeCN)}2{(4-S)Fe3(CO)9}2Hg]n (3 and 3'), as evidenced by XRD and PXRD analyses. Interestingly, the solid-state packings showed that the unexpected non-classical C‒H…O (carbonyl) hydrogen bonds existed in the frameworks of the series of EFe3Hg-Cu (E = S, Se, Te) polymers, which can be regarded to facilitate the electron transport. The intriguing structure-property relationships were demonstrated by the significant change in the oxidation state of Cu atom by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure spectroscopy (XANES).
第一章
1. Shieh, M.; Yu, C.-H.; Chu, Y.-Y.; Guo, Y.-W.; Huang, C.-Y.; Hsing, K.-J.; Chen, P.-C.; Lee, C.-F. Chem. Asian J. 2013, 8, 963‒973.
2. Shieh, M.; Chu, Y.-Y.; Hsu, M.-H.; Ke, W.-M.; Lin, C.-N. Inorg. Chem. 2011, 50, 565‒575.
3. Shieh, M.; Miu, C.-Y.; Huang, K.-C.; Lee, C.-F.; Chen, B.-G. Inorg. Chem. 2011, 50, 7735‒7748.
4. Shieh, M.; Yu, C.-C.; Hsing, K.-J.; Chang, W.-J. Chem. Eur. J. 10.1002/chem.201702396
5. Huttner, G.; Weber, U.; Sigwarth, B.; Scheidsteger, O.; Lang, H.; Zsolnai, L. J. Organomet. Chem. 1985, 282, 331–348.
6. 孫子硯,國立臺灣師範大學碩士論文,2016。
7. (a) Gabbaϊ, F. P.; Hirai, M. Angew. Chem., Int. Ed. 2015, 54, 1205–1209. (b) Gabbaϊ, F. P.; Cho, J.; Hirai, M. Chem. Eur. J. 2016, 22, 6537–6541.
8. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J.; King, R. C., Jr., Ed.; Physical Electronics, Inc., Eden Prairie, Minnesota, United State of America, 1995.
9. Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735─746.
10. 邢凱捷,國立臺灣師範大學碩士論文,2015。
11. Pyykkö, P.; Atsumi, M. Chem. Eur. J. 2009, 15, 186–197.
12. Alvarez, S. Dalton Trans. 2013, 42, 8617–8636.
13. Cherng, J.-J.; Lee, G.-H.; Peng, S.-M.; Ueng, C.-H.; Shieh, M. Organometallics 2000, 19, 213–215.
14. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
15. Shieh, M.; Cherng, J.-J.; Lai, Y.-W.; Ueng, C.-H.; Peng, S.-M.; Liu, Y.-H. Chem. Eur. J. 2002, 8, 4522–4527.
16. (a) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. L. C. Inorg. Chem. 1978, 17, 297‒301. (b) Smith, M. B.; Bau, R. J. Am. Chem. Soc. 1973, 95, 2388‒2389.
17. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
18. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
第二章
1. (a) Noro, S.; Kitaura, R.; Kondo, M.; Kitagawa, S.; Ishii, T.; Matsuzaka, H.; Yamashita, M. J. Am. Chem. Soc. 2002, 124, 2568–2583. (b) Cui, X.; Khlobystov, A. N.; Chen, X.; Marsh, D. H.; Blake, A. J.; Lewis, W.; Champness, N. R.; Roberts, C. J.; Schröder, M. Chem. Eur. J. 2009, 15, 8861–8873.
2. Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127–2157.
3. Hou, S.; Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Inorg. Chem. 2013, 52, 3225–3235
4. Shi, D.; He, Cheng.; Qi, Bo.; Chen, Cong.; Niu, J.; Duan, C. Chem. Sci. 2015, 6, 1035–1042.
5. (a) Miu, C.-Y.; Chi, H.-H.; Chen, S.-W.; Cherng, J.-J.; Hsu, M.-H.; Huang, Y.-X.; Shieh, M. New J. Chem. 2011, 35, 2442–2455. (b) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303–2305. (c) 陳彥銘,國立師範大學碩士論文,2010。
6. Batsanov, A. S.; Begley, M. J.; Hubberstey, P.; Stroud, J. J. Chem. Soc. Dalton Trans. 1996, 1947–1957.
7. 傅怡瑄,國立師範大學碩士論文,2014。
8. Alvarez, S. Dalton Trans. 2013, 42, 8617–8636.
9. Shieh, M.; Yu, C.-C.; Miu, C.-Y.; Kung, C.-H.; Huang, C.-Y.; Liu, Y.-H.; Liu, H.-L.; Shen, C.-C. Chem. Eur. J. 10.1002/chem.201702641
10. 謝明惠,缪佳曄,未發表之結果。
11. Berry, F. J.; Marco, J. F.; Ren, X. J. Solid State Chem. 2005, 178, 961–969.
12. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
13. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90‒92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827‒1837.
14. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
15. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
附錄
1. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
2. 孫子硯,國立臺灣師範大學碩士論文,2016。
3. (a) Kubas, G. J. Inorg. Synth. 1979, 19, 90‒92. (b) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827‒1837.
4. 邢凱捷,國立臺灣師範大學碩士論文,2015。
5. Blessing, R. H. Acta Crystallogr., Sect. A 1995, 51, 33–38.
6. Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen, Germany, 1997.
7. (a) Kotüm, G. Reflectance Spectroscopy, Springer-Verlag, New York, 1969. (b) Wendlandt, W. W.; Hecht, H. G. Reflectance Spectroscopy, Interscience Publishers, New York, 1966.