簡易檢索 / 詳目顯示

研究生: 蔣宜芳
Chiang, Yi-Fang
論文名稱: 使用排隊理論分析室外空氣品質與人口流動對於COVID-19 的爆發風險
Predicting Risk of COVID-19 Outbreak by using Outdoor Air Pollution Indicators and Population Flow with Queueing Theory
指導教授: 賀耀華
Ho, Yao-Hua
口試委員: 劉宇倫
Liu, Yu-Lun
陳伶志
Chen, Ling-Jyh
賀耀華
Ho, Yao-Hua
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
DOI URL: http://doi.org/10.6345/NTNU202201285
論文種類: 學術論文
相關次數: 點閱:78下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自2019年12月首次被發現以來 COVID-19 已經席捲各個國家,因其高度傳染性使得各國難以預防,當相關機構要執行防疫措施時,其執行的時間點需要更多資訊進行評估。COVID-19 主要透過飛沫傳染,因此本研究將人口流動視為其中的關鍵影響,但是增加傳染的風險並不局限於人口流動一種
    。空氣汙染物也被認為與呼吸道相關疾病有著高度的相關性,先前研究也使用空氣品質以預測流感病毒爆發時間,此外研究也觀察到人口流動與空氣汙染物間存在一定的相關性,像是因為開車而造成 NO2 以及 PM2.5 的增加等。
    本研究所選擇的影響因素可以觀察到相關機構的防疫措施對於這些因素的影響性,例如是否強制規定戴口罩、居家令的執行以及重新開放等相關防疫措施。戴口罩可以減少飛沫傳染的風險也較能減少空氣汙染物的影響,而居家令則是會減少人口的流動也減少人與外面空氣的接觸,重新開放則是使得人口流動恢復也增加空氣污染物。因此本研究希望能透過所提出的影響因素來協助評估目前疫情爆發的風險並做為防疫措施的一參考數值。
    本研究使用美國加利福尼亞州、佛羅里達州、紐澤西州以及紐約州的人口流動、室外空氣汙染物及疫苗接種預測COVID-19 確診人數及活動病例,並以排隊理論預測其平均所需康復時間,將預測結果帶入的風險分析。最終以斜率來進行風險分析,獲取爆發閥值,預測可能存在的高風險時段,將這些時段與防疫措施結合,提供相關機構一個評估防疫措施的參考數據,期望達到對疫情有更好的控制。

    COVID-19 has swept all countries since it was first discovered in December, 2019. The high infectivity of COVID-19 makes it more difficult to prevent it, and air quality has been considered to be highly correlated with respiratory diseases. Previous study shown that air quality has been used for influenza viruses outbreak time prediction, but air is not the only one that increases the risk of infection. Population movement is also one of the key influences. We have observed that population movement is also correlated with air pollutions. In addition, the study also observed a certain correlation between population movement and air pollutants, such as the increase in NO2 and PM2.5 caused by driving.
    In addition, the government's epidemic prevention strategies are also one of the factors that affect the risk of infection, such as whether it is mandatory to wear masks or household orders, etc. Wearing masks can reduce the risk of droplet infection and the impact of air pollution, while household orders can reduce the mobility of the population and the contact between people and the outside air.
    In this study, the number of COVID-19 cases and active cases will be predicted according to population flow, outdoor air pollutions and vaccination in California, Florida, New Jersey and New York, and the average recovery time will be predicted by queuing theory, and the predicted results will be brought into risk analysis. Finally, the slope is used to analyze the risk, predict the possible high-risk time periods, and combine these time periods with the epidemic prevention measures to provide a reference data for relevant institutions to evaluate the epidemic prevention measures, hoping to achieve better control of the epidemic situation.

    第一章 緒論 1 第二章 文獻探討 3 第一節 人口流動與 COVID-19的相關性 3 第二節 空氣汙染物與 COVID-19的相關性 4 第三節 人口流動與空氣品質的相關性 6 第四節 呼吸道疾病預測 7 2.4.1 機器學習及人工神經網路演算法 8 2.4.2 實際研究 12 第五節 風險評估 13 2.5.1 排隊理論 15 第三章 研究方法 17 第一節 資料來源、相關性分析及前處理 18 3.1.1 資料來源 18 3.1.2 資料前處理 19 3.1.3 各州資料分析 20 3.1.4 資料相關性分析 24 3.1.5 滯後影響 28 3.1.6 資料合併及切割 30 第二節 資料預測 32 3.2.1 機器學習模型 33 3.2.2 LSTM 模型 34 3.2.3 模型評估 35 第三節 排隊理論及風險分析 36 3.3.1 排隊理論 36 3.3.2 風險分析 38 第四章 實驗結果分析 42 第一節 模型分析 42 第二節 案例探討 44 4.1.1 加利福尼亞州 45 第五章 結論與未來展望 54 第六章 參考文獻 56

    [1] “World Health Organization. Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations.” 2020 Available from: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. [(accessed on 22 May 2020)]

    [2] Guarnieri M., Balmes J.R. “Outdoor air pollution and asthma.” The Lancet 2014, 383(9928), 1581-1592.

    [3] Goldizen F.C., Sly P.D., Knibbs L.D. “Respiratory effects of air pollution on children.” Pediatric pulmonology 2016, 51(1), 94-108.

    [4] Jiang X. Q., Mei X. D., Feng D. “Air pollution and chronic airway diseases: what should people know and do?.” Journal of thoracic disease 2016, 8(1), E31–E40. https://doi.org/10.3978/j.issn.2072-1439.2015.11.50

    [5] Setti L., Passarini F., de Gennaro G, et al. “Evaluation of the Potential Relationship between Particulate Matter (PM) Pollution and COVID-19 Infection Spread in Italy.” Available online:http://www.simaonlus.it/wpsima/wp-content/uploads/2020/03/COVID_19_position-paper_ENG.pdf. [(accessed on 22 May 2020)]

    [6] Gupta A., Bherwani H., Gautam S., et al. “Air pollution aggravating COVID-19 lethality? Exploration in Asian cities using statistical models.” Environ Dev Sustain 23, 6408–6417 (2021). https://doi.org/10.1007/s10668-020-00878-9

    [7] Beckerman B.S., Jerrett M., Brook, J.R, et al. “Correlation of nitrogen dioxide with other traffic pollutants near a major expressway.” Atmospheric Environment 2018, 42, 275-290.

    [8] Chen ZL, Zhang Q, Lu Y, et al. “Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China.” Chin Med J (Engl). 2020;133(9):1044-1050. doi:10.1097/CM9.0000000000000782

    [9] Chen H, Chen Y, Lian Z, et al. “Correlation between the migration scale index and the number of new confirmed coronavirus disease 2019 cases in China.” Epidemiology and Infection. 2020;148:e99. doi:10.1017/S0950268820001119

    [10] Dahlberg M, Edin P.A., Grönqvist E, et al. “Effects of the COVID-19 Pandemic on Population Mobility under Mild Policies: Causal Evidence from Sweden.” 2020. [J]. arXiv preprint arXiv:2004.09087

    [11] Drake TM, Docherty AB, Weiser TG, et al. “The effects of physical distancing on population mobility during the COVID-19 pandemic in the UK.” Lancet Digit Health. 2020 Aug, 2(8):e385-e387. doi: 10.1016/S2589-7500(20)30134-5.

    [12]Lee H, Park SJ, Lee GR, et al. “The relationship between trends in COVID-19 prevalence and traffic levels in South Korea.” Int J Infect Dis. 2020 Jul;96:399-407. doi: 10.1016/j.ijid.2020.05.031.
    [13]Lee H, Noh E, Jeon H, Nam EW. “Association between traffic inflow and COVID-19 prevalence at the provincial level in South Korea.” Int J Infect Dis. 2021 Jul;108:435-442. doi: 10.1016/j.ijid.2021.05.054

    [14]Li X, Rudolph AE, Mennis J. “Association Between Population Mobility Reductions and New COVID-19 Diagnoses in the United States Along the Urban–Rural Gradient.” February–April, 2020. Prev Chronic Dis 2020;17:200241. DOI: http://dx.doi.org/10.5888/pcd17.200241external icon

    [15] C A Pope, 3rdBrigham Young University, Provo, UT 84602. “Respiratory disease associated with community air pollution and a steel mill, Utah Valley.” American Journal of Public Health 79, no. 5 (May 1, 1989): pp. 623-628. https://doi.org/10.2105/AJPH.79.5.623

    [16] Schwartz J. “Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease.” Thorax. 1995 May;50(5):531-8. doi: 10.1136/thx.50.5.531.

    [17] Li HH., Liu CC., Hsu TW. et al. “Upregulation of ACE2 and TMPRSS2 by particulate matter and idiopathic pulmonary fibrosis: a potential role in severe COVID-19.” Part Fibre Toxicol 18, 11 (2021). https://doi.org/10.1186/s12989-021-00404-3

    [18] Winterbottom CJ, Shah RJ, Patterson KC, et al. “Exposure to Ambient Particulate Matter Is Associated With Accelerated Functional Decline in Idiopathic Pulmonary Fibrosis.” Chest. 2018 May;153(5):1221-1228. doi: 10.1016/j.chest.2017.07.034.

    [19] Comunian, S., Dongo, D., Milani, C., et al. “Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality.” International journal of environmental research and public health 2020, 17(12), 4487. https://doi.org/10.3390/ijerph17124487

    [20] Fiasca F, Minelli M, Maio D, et al. “Associations between COVID-19 Incidence Rates and the Exposure to PM2.5 and NO2: A Nationwide Observational Study in Italy.” International Journal of Environmental Research and Public Health. 2020; 17(24):9318. https://doi.org/10.3390/ijerph17249318

    [21] Arias Velásquez RM, Mejía Lara JV. “Gaussian approach for probability and correlation between the number of COVID-19 cases and the air pollution in Lima.” Urban Clim. 2020 Sep;33:100664. doi: 10.1016/j.uclim.2020.100664.

    [22] Bashir M. F., Ma B., Bilal, Komal, et al. “Correlation between climate indicators and COVID-19 pandemic in New York, USA.” The Science of the total environment 2020, 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835

    [23] Zoran MA, Savastru RS, Savastru DM, et al. “Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy.” Sci Total Environ. 2020 Oct 10;738:139825. doi: 10.1016/j.scitotenv.2020.139825. Epub 2020 Jun 2. PMID: 32512362; PMCID: PMC7265857.

    [24] Ogen Y. “Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality.” Sci Total Environ. 2020 Jul 15;726:138605. doi: 10.1016/j.scitotenv.2020.138605.

    [25] Mele M., Magazzino C., “Schneider N., et al. NO2 levels as a contributing factor to COVID-19 deaths: The first empirical estimate of threshold values.” Environmental research 2021, 194, 110663. https://doi.org/10.1016/j.envres.2020.110663

    [26] Magazzino C, Mele M, Sarkodie SA. “The nexus between COVID-19 deaths, air pollution and economic growth in New York state: Evidence from Deep Machine Learning.” Journal of Environmental Management. 2021;286:112241. pmid:33667818

    [27] Chen Z, Hao X, Zhang X, et al. “Have traffic restrictions improved air quality? A shock from COVID-19.” J Clean Prod. 2021 Jan 10;279:123622. doi: 10.1016/j.jclepro.2020.123622.

    [28]Rainald B. “Philipp Schrauth,Population density and urban air quality,Regional Science and Urban Economics” Volume 86, 2021, 103596, ISSN 0166-0462, https://doi.org/10.1016/j.regsciurbeco.2020.103596.

    [29] Yifan F, Xiaotian D, Jian H, et al. “Characteristics of urban air pollution in different regions of China between 2015 and 2019,” Building and Environment, Volume 180, 2020, 107048, ISSN 0360-1323, https://doi.org/10.1016/j.buildenv.2020.107048.

    [30] Blagoiev M., Gruicin I., Ionascu M., et al "A Study on Correlation Between Air Pollution and Traffic," 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 420-425, doi: 10.1109/TELFOR.2018.8612084.

    [31] Azmi S.Z., Latif M.T., Ismail A.S. et al. “Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia.” Air Qual Atmos Health 3, 53–64 (2010). https://doi.org/10.1007/s11869-009-0051-1.

    [32] Islam M.S., Tusher T.R., Roy S. et al. “Impacts of nationwide lockdown due to COVID-19 outbreak on air quality in Bangladesh: a spatiotemporal analysis.” Air Qual Atmos Health 14, 351–363 (2021). https://doi.org/10.1007/s11869-020-00940-5

    [33] Liane Y. K. N., Rodrigo C. “Urban,COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil,” Science of The Total Environment,Volume 730, 2020, 139087, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.139087.

    [34] World Health Organization. (n.d.). Coronavirus. World Health Organization. Available from: https://www.who.int/health-topics/coronavirus#tab=tab_1. [(accessed on 23 May 2020)]

    [35] 疾病介紹. 衛生福利部疾病管制署. (n.d.). Available from: https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A. [(accessed on 23 Mar 2020)]

    [36] Wikimedia Foundation. (2022, January 26). 機器學習. Wikipedia. Available from: https://zh.wikipedia.org/zh-tw/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0. [(accessed on 23 Mar 2020)]

    [37] Wikimedia Foundation. (2022, May 31). 人工神經網路. Wikipedia. Available from: https://zh.wikipedia.org/zh-tw/%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C. [(accessed on 23 Mar 2020)]

    [38] Mohan S., Thirumalai C., Srivastava G. “Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques,” in IEEE Access 2019, vol. 7, pp. 81542-81554, doi: 10.1109/ACCESS.2019.2923707.

    [39] Moll M, Qiao D, Regan EA, et al. “Machine Learning and Prediction of All-Cause Mortality in COPD.” Chest. 2020 Sep;158(3):952-964. doi: 10.1016/j.chest.2020.02.079.

    [40] Samaneh K, Yang Y, Timothy M.W., et al. “Application of machine learning techniques to tuberculosis drug resistance analysis,” Bioinformatics, Volume 35, Issue 13, 1 July 2019, Pages 2276–2282, https://doi.org/10.1093/bioinformatics/bty949

    [41] Gergo P, Imre F, Amir M, et al. “COVID-19 Pandemic Prediction for Hungary; a Hybrid Machine Learning Approach.”
    medRxiv .2020.05.02.20088427; doi: https://doi.org/10.1101/2020.05.02.20088427

    [42] Pradhan, Manaswini, Sahu, et al. “Predict the onset of diabetes disease using Artificial Neural Network (ANN).” International Journal of Computer Science & Emerging Technologies (E-ISSN) 2011. 2. 2044-6004.

    [43] Junejo A., Shen Y., Laghari A. A., et al. “Notice of Retraction: Molecular Diagnostic and Using Deep Learning Techniques for Predict Functional Recovery of Patients Treated of Cardiovascular Disease,” in IEEE Access, vol. 7, pp. 120315-120325, 2019, doi: 10.1109/ACCESS.2019.2937290.

    [44] Gabriela P., Yara S.T., Hugo V.S., et al. “Assessing the impact of PM2.5 on respiratory disease using artificial neural networks,” Environmental Pollution, Volume 235,2018,Pages 394-403,ISSN 0269-7491,https://doi.org/10.1016/j.envpol.2017.12.111.

    [45] K. L. Khatri and L. S. Tamil, "Early Detection of Peak Demand Days of Chronic Respiratory Diseases Emergency Department Visits Using Artificial Neural Networks," in IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 1, pp. 285-290, Jan. 2018, doi: 10.1109/JBHI.2017.2698418.

    [46] Wu, Neo G., Bradley B., et al. “Deep Transformer Models for Time Series Forecasting: The Influenza Prevalence Case.” 2020, https://doi.org/10.48550/arXiv.2001.08317

    [47] Pal R, Sekh AA, Kar S, et al. “Neural Network Based Country Wise Risk Prediction of COVID-19.” Applied Sciences. 2020; 10(18):6448. https://doi.org/10.3390/app10186448

    [48] F W Wibowo and Wihayati 2021 J. Phys.: Conf. Ser. 1803 012015

    [49] Rath S, Tripathy A, Tripathy AR. “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model.” Diabetes Metab Syndr. 2020 Sep-Oct;14(5):1467-1474. doi: 10.1016/j.dsx.2020.07.045.

    [50] YeŞİlkanat CM. “Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm.” Chaos Solitons Fractals. 2020 Nov;140:110210. doi: 10.1016/j.chaos.2020.110210.

    [51] A. U. Mandayam, R. A.C, S. Siddesha, et al, “Prediction of Covid-19 pandemic based on Regression,” 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), 2020, pp. 1-5, doi: 10.1109/ICRCICN50933.2020.9296175.

    [52] Chimmula VKR, Zhang L. “Time series forecasting of COVID-19 transmission in Canada using LSTM networks.” Chaos Solitons Fractals. 2020 Jun;135:109864. doi: 10.1016/j.chaos.2020.109864. Epub 2020 May 8. PMID: 32390691; PMCID: PMC7205623.

    [53] M. Gupta, R. Jain, S. Arora, et al., “Ai-enabled covid-19 outbreak analysis and prediction: indian states vs. union territories,” Computers, Materials & Continua, vol. 67, no.1, pp. 933–950, 2021.

    [54] Vijander S., Ramesh C.P., Sandeep K., et al. “Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine,” Journal of Discrete Mathematical Sciences and Cryptography 2020, 23:8, 1583-1597, DOI: 10.1080/09720529.2020.1784535

    [55] Ricardo Manuel Arias Velásquez, Jennifer Vanessa Mejía Lara. “Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression,” Chaos, Solitons & Fractals,Volume 136,2020,109924,ISSN 0960-0779,https://doi.org/10.1016/j.chaos.2020.109924.

    [56] Chaurasia V, Pal S. “COVID-19 Pandemic: ARIMA and Regression Model-Based Worldwide Death Cases Predictions.” SN Comput Sci. 2020;1(5):288. doi: 10.1007/s42979-020-00298-6.

    [57] López L, Rodó X. “A modified SEIR model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics.” Results Phys. 2021 Feb;21:103746. doi: 10.1016/j.rinp.2020.103746.

    [58] Rajan G., Gaurav P., Poonam C., et al. “SEIR and Regression Model based COVID-19 outbreak predictions in India.” medRxiv 2020.04.01.20049825; doi: https://doi.org/10.1101/2020.04.01.20049825.

    [59] Heesterbeek JA. “A brief history of R0 and a recipe for its calculation.” Acta Biotheoretica. 2002, 50 (3): 189–204. doi:10.1023/A:1016599411804. hdl:1874/383700.

    [60] Liu, Ying, Rocklöv, et al. “The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus.” Journal of Travel Medicine. 2021-10-01, 28 (7) [2022-03-26]. doi:10.1093/jtm/taab124

    [61] Gallagher, James. “Covid: Is there a limit to how much worse variants can get?”. BBC News. 12 June 2021

    [62] “Omicron is the Dominant COVID Variant for Two Reasons.” Vitals. 2021-12-28

    [63] Locatelli I, Trächsel B, Rousson V. “Estimating the basic reproduction number for COVID-19 in Western Europe.” PLoS One. 2021 Mar 17;16(3):e0248731. doi: 10.1371/journal.pone.0248731.

    [64] Knight J, Mishra S. “Estimating effective reproduction number using generation time versus serial interval, with application to covid-19 in the Greater Toronto Area, Canada.” Infect Dis Model. 2020;5:889-896. doi: 10.1016/j.idm.2020.10.009.

    [65] Marimuthu S, Joy M, Malavika B, et al. “Modelling of reproduction number for COVID-19 in India and high incidence states.” Clin Epidemiol Glob Health. 2021 Jan-Mar;9:57-61. doi: 10.1016/j.cegh.2020.06.012.

    [66] Brauer F. “Compartmental Models in Epidemiology.” Mathematical Epidemiology 2008, 1945, 19–79. https://doi.org/10.1007/978-3-540-78911-6_2

    [67] Robert B. Cooper. “Queueing theory.” In Proceedings of the ACM '81 conference (ACM '81). Association for Computing Machinery 1981, New York, NY, USA, 119–122. https://doi.org/10.1145/800175.809851

    [68] Trapman P, Bootsma MC. “A useful relationship between epidemiology and queueing theory: the distribution of the number of infectives at the moment of the first detection.” Math Biosci. 2009 May;219(1):15-22. doi: 10.1016/j.mbs.2009.02.001.

    [69] Bekker R, Broek MUH, Koole G. “Modeling COVID-19 hospital admissions and occupancy in the Netherlands.” Eur J Oper Res. 2022 Jan 5. doi: 10.1016/j.ejor.2021.12.044.

    [70] Furman, E., Cressman, A., Shin, S. et al. “Prediction of personal protective equipment use in hospitals during COVID-19.” Health Care Manag Sci 24, 439–453 (2021). https://doi.org/10.1007/s10729-021-09561-5

    [71] Ferreira, Manuel. “An Approach with a Queue System to the Pandemic Period Study.” Journal of Modern Accounting and Auditing 2018. 14. 10.17265/1548-6583/2018.05.006.

    [72] Meares, H.D., Jones, M.P. “When a system breaks: queueing theory model of intensive care bed needs during the COVID-19 pandemic.” Med. J. Aust. 2020, 212: 470-471. https://doi.org/10.5694/mja2.50605

    [73] Raffensperger John F., Marygail K. Brauner, Briggs R.J. “Planning Hospital Needs for Ventilators and Respiratory Therapists in the COVID-19 Crisis.” Santa Monica, CA: RAND Corporation, 2020. https://www.rand.org/pubs/perspectives/PEA228-1.html

    [74] Ho YH, Tai YJ, Chen LJ. “COVID-19 Pandemic Analysis for a Country’s Ability to Control the Outbreak Using Little’s Law.” Infodemiology Approach. Sustainability. 2021; 13(10):5628. https://doi.org/10.3390/su13105628

    [75] Little, J.D.C. “A Proof for the Queuing Formula: L = λW.” Oper. Res. 1961, 9, 383–387.

    [76] Environmental Protection Agency. (n.d.). EPA. Available from: https://www.epa.gov/outdoor-air-quality-data/download-daily-data. [(accessed on 10 Jan 2020)]

    [77] Covid‑19 - mobility trends reports. Apple. Available from: https://covid19.apple.com/mobility. [(accessed on 10 Jan 2020)]

    [78] United States. Worldometer. Available from: https://www.worldometers.info/coronavirus/country/us/. [(accessed on 10 Jan 2020)]

    [79] Understanding the COVID-19 pandemic. USAFacts. Available from: https://usafacts.org/issues/coronavirus/. [(accessed on 10 Jan 2020)]

    [80] Statista Research Department. “Mobile OS share in North America 2018-2021”. Statista. Available from: https://www.statista.com/statistics/1045192/share-of-mobile-operating-systems-in-north-america-by-month/. [(accessed on 1 July 2020)]

    [81] Ritchie H., Mathieu E., Rodés-Guirao L., et al. (2020, March 5). Coronavirus (COVID-19) vaccinations. Our World in Data. Available from: https://ourworldindata.org/covid-vaccinations. [(accessed on 22 Feb 2020)]

    [82] Most polluted places to live: State of the Air. State of the Air | American Lung Association. (n.d.). Available from: https://www.lung.org/research/sota/key-findings/most-polluted-places. [(accessed on 5 May 2020)]

    [83] Benesty, J., Chen, J., Huang, Y., et al. “Pearson correlation coefficient. In Noise reduction in speech processing.” Springer 2009, Berlin, Heidelberg, (pp. 1-4).

    [84] Ritchie H., Mathieu E., Rodés-Guirao, L., et al. (2020, March 5). Coronavirus (COVID-19) cases. Our World in Data. Available from: https://ourworldindata.org/covid-cases. [(accessed on 5 May 2020)]

    [85] Simpson R.B., Lauren B.N., Schipper K.H., et al. “Critical Periods, Critical Time Points and Day-of-the-Week Effects in COVID-19 Surveillance Data: An Example in Middlesex County,” Massachusetts, USA. Int. J. Environ. Res. Public Health 2022, 19, 1321. https://doi.org/10.3390/ijerph19031321

    [86] Aragão D.P., dos Santos D.H., Mondini, A., et al. “National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil.” Int. J. Environ. Res. Public Health 2021, 18, 11595. https://doi.org/10.3390/ijerph182111595

    [87] Wikimedia Foundation. Covid-19 pandemic in California. Wikipedia. Available from: https://en.wikipedia.org/wiki/COVID-19_pandemic_in_California. [(accessed on 23 May 2020)]

    [88] Impact of opening and closing decisions in California, new cases - johns hopkins. Johns Hopkins Coronavirus Resource Center. (n.d.). Available from: https://coronavirus.jhu.edu/data/state-timeline/new-confirmed-cases/california. [(accessed on 23 May 2020)]

    [89] "Timeline of the COVID-19 pandemic in the United States (2021). Wikipedia. Available from: https://en.wikipedia.org/wiki/Timeline_of_the_COVID-19_pandemic_in_the_United_States_(2021) . [(accessed on 23 May 2020)]

    下載圖示
    QR CODE