簡易檢索 / 詳目顯示

研究生: 林鉊軒
Lin, Zhao-Xuan
論文名稱: 鋁金屬有機骨架由非序化中間物轉換至結晶態之研究
Exploration the Transition of Aluminum Metal-Organic Frameworks from Amorphous Intermediate to Crystal
指導教授: 林嘉和
Lin, Chia-Her
口試委員: 李位仁
Lee, Way-Zen
洪匡聖
Hong, Kuang-Sheng
林嘉和
Lin, Chia-Her
口試日期: 2023/05/25
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 95
中文關鍵詞: 雙溶劑置換加熱抽真空金屬有機骨架
英文關鍵詞: Two solvent exchange, Heat under vacuum, Metal-Organic framework
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300566
論文種類: 學術論文
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1-1 MOF簡介 1 1-2 MOF結構演進 3 1-3 MOF活化 5 1-4 MOF缺陷 6 1-5 研究動機 8 1-6 Al-MOF 簡介 9 MIL-53 11 MIL-100 14 CAU-10 17 第二章 實驗與儀器 19 2-1 實驗藥品 19 2-2 儀器機型和測量簡介 23 粉末X-ray射線繞射儀 (PXRD) 23 比表面積及孔隙分析儀 24 場發式掃描電子顯微鏡 (FE-SEM) 25 熱重分析儀(TGA) 26 2-3 實驗合成方法 27 第三章 結果與討論 28 【第一部分 溶劑脫附誘導之快速結晶合成探討】 28 金屬有機骨架晶體成核過程 28 3-1 快速結晶化實驗 29 MIL-53 29 MIL-100 30 CAU-10 31 3-2 粉末X光繞射(PXRD)鑑定 32 MIL-53 32 MIL-100 33 CAU-10 34 3-3 場發式掃描電子顯微鏡(FE-SEM)鑑定 36 MIL-53 36 MIL-100 39 CAU-10 41 3-4 比表面積及孔隙分析儀鑑定 44 MIL-53 44 MIL-100 46 CAU-10 48 3-5 熱穩定性鑑定(TGA) 50 MIL-53 50 MIL-100 51 CAU-10 52 3-6 氯化銨鹼洗 53 粉末繞射儀(PXRD)鑑定 54 比表面積及孔隙分析儀鑑定 55 3-7 MOF大量合成 57 粉末繞射儀(PXRD)鑑定 58 比表面積及孔隙分析儀鑑定 59 【第二部分熱DMF攪拌清洗之結構探討】 61 3-8 粉末X光繞射(PXRD)鑑定 62 MIL-53 62 MIL-100 64 CAU-10 66 3-9 場發式掃描電子顯微鏡(FE-SEM)鑑定 68 MIL-53 68 MIL-100 69 CAU-10 70 3-10 比表面積及孔隙分析儀鑑定 71 MIL-53 71 MIL-100 73 CAU-10 75 3-11 熱穩定性鑑定(TGA) 77 MIL-53 77 MIL-100 78 CAU-10 79 第四章 結論 80 參考文獻 82 附錄 86 MIL-53 不同反應時間PXRD圖 86 MIL-100 不同反應時間PXRD圖 88 CAU-10 不同反應時間PXRD圖 90 不同反應時間產重及比表面積對比圖 92 Q&A 94

    1. Kitagawa, S., Metal–organic frameworks (MOFs). Chemical Society Reviews 2014, 43, 5415-5418.
    2. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. nature 1999, 402, 276-279.
    3. Chen, L.; Luque, R.; Li, Y., Controllable design of tunable nanostructures inside metal–organic frameworks. Chemical Society Reviews 2017, 46, 4614-4630.
    4. Mandal, S.; Natarajan, S.; Mani, P.; Pankajakshan, A., Post‐synthetic modification of metal–organic frameworks toward applications. Advanced Functional Materials 2021, 31, 2006291.
    5. Chaemchuen, S.; Kabir, N. A.; Zhou, K.; Verpoort, F., Metal–organic frameworks for upgrading biogas via CO 2 adsorption to biogas green energy. Chemical Society Reviews 2013, 42, 9304-9332.
    6. Liu, J.; Xia, W.; Mu, W.; Li, P.; Zhao, Y.; Zou, R., New challenge of metal–organic frameworks for high-efficient separation of hydrogen chloride toward clean hydrogen energy. Journal of Materials Chemistry A 2015, 3, 5275-5279.
    7. Kapelewski, M. T.; Runčevski, T. e.; Tarver, J. D.; Jiang, H. Z.; Hurst, K. E.; Parilla, P. A.; Ayala, A.; Gennett, T.; FitzGerald, S. A.; Brown, C. M., Record high hydrogen storage capacity in the metal–organic framework Ni2 (m-dobdc) at near-ambient temperatures. Chemistry of Materials 2018, 30, 8179-8189.
    8. Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W., Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society 2011, 133, 13445-13454.
    9. Freund, R.; Zaremba, O.; Arnauts, G.; Ameloot, R.; Skorupskii, G.; Dincă, M.; Bavykina, A.; Gascon, J.; Ejsmont, A.; Goscianska, J., The current status of MOF and COF applications. Angewandte Chemie International Edition 2021, 60, 23975-24001.
    10. Horike, S.; Shimomura, S.; Kitagawa, S., Soft porous crystals. Nature chemistry 2009, 1, 695-704.
    11. Kim, S.-Y.; Kim, A.-R.; Yoon, J. W.; Kim, H.-J.; Bae, Y.-S., Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chemical Engineering Journal 2018, 335, 94-100.
    12. Zhang, S.-Y.; Jensen, S.; Tan, K.; Wojtas, L.; Roveto, M.; Cure, J.; Thonhauser, T.; Chabal, Y. J.; Zaworotko, M. J., Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society 2018, 140, 12545-12552.
    13. Lei, J.; Qian, R.; Ling, P.; Cui, L.; Ju, H., Design and sensing applications of metal–organic framework composites. TrAC Trends in Analytical Chemistry 2014, 58, 71-78.
    14. Kitagawa, S., Future porous materials. Accounts of Chemical Research 2017, 50, 514-516.
    15. Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T., Activation of metal–organic framework materials. CrystEngComm 2013, 15, 9258-9264.
    16. Ma, J.; Kalenak, A. P.; Wong‐Foy, A. G.; Matzger, A. J., Rapid guest exchange and ultra‐low surface tension solvents optimize metal–organic framework activation. Angewandte Chemie 2017, 129, 14810-14813.
    17. Chang, G. G.; Ma, X. C.; Zhang, Y. X.; Wang, L. Y.; Tian, G.; Liu, J. W.; Wu, J.; Hu, Z. Y.; Yang, X. Y.; Chen, B., Construction of hierarchical metal–organic frameworks by competitive coordination strategy for highly efficient CO2 conversion. Advanced Materials 2019, 31, 1904969.
    18. Koutsianos, A.; Kazimierska, E.; Barron, A. R.; Taddei, M.; Andreoli, E., A new approach to enhancing the CO 2 capture performance of defective UiO-66 via post-synthetic defect exchange. Dalton Transactions 2019, 48, 3349-3359.
    19. Taddei, M., When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews 2017, 343, 1-24.
    20. Wang, Z.; Babucci, M.; Zhang, Y.; Wen, Y.; Peng, L.; Yang, B.; Gates, B. C.; Yang, D., Dialing in catalytic sites on metal organic framework nodes: MIL-53 (Al) and MIL-68 (Al) probed with methanol dehydration catalysis. ACS Applied Materials & Interfaces 2020, 12, 53537-53546.
    21. Lo, S.-H.; Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.-Y.; Li, B.-H.; Liu, W.-L.; Day, G. S.; Tao, S., Rapid desolvation-triggered domino lattice rearrangement in a metal–organic framework. Nature Chemistry 2020, 12, 90-97.
    22. Fan, W.; Wang, K.-Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H.-C.; Wang, R., Aluminum metal–organic frameworks: From structures to applications. Coordination Chemistry Reviews 2023, 489, 215175.
    23. Gaab, M.; Trukhan, N.; Maurer, S.; Gummaraju, R.; Müller, U., The progression of Al-based metal-organic frameworks–From academic research to industrial production and applications. Microporous and mesoporous materials 2012, 157, 131-136.
    24. Millange, F.; Serre, C.; Férey, G., Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Cr iii hybrid inorganic–organic microporous solids: Cr iii (OH)·{O 2 C–C 6 H 4–CO 2}·{HO 2 C–C 6 H 4–CO 2 H} x. Chemical Communications 2002, (8), 822-823.
    25. Serre, C.; Millange, F.; Thouvenot, C.; Nogues, M.; Marsolier, G.; Louër, D.; Férey, G., Very large breathing effect in the first nanoporous chromium (III)-Based solids: MIL-53 or CrIII (OH)⊙{O2C− C6H4− CO2}⊙{HO2C− C6H4− CO2H} x⊙ H2O y. Journal of the American chemical society 2002, 124, 13519-13526.
    26. Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G., A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration. Chemistry–A European Journal 2004, 10, 1373-1382.
    27. Khan, N. A.; Lee, J. S.; Jeon, J.; Jun, C.-H.; Jhung, S. H., Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation. Microporous and Mesoporous Materials 2012, 152, 235-239.
    28. Volkringer, C.; Popov, D.; Loiseau, T.; Férey, G.; Burghammer, M.; Riekel, C.; Haouas, M.; Taulelle, F., Synthesis, single-crystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100. Chemistry of Materials 2009, 21, 5695-5697.
    29. Fröhlich, D.; Pantatosaki, E.; Kolokathis, P. D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M. A.; De Vos, D. E.; Stock, N.; Papadopoulos, G. K., Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships. Journal of Materials Chemistry A 2016, 4, 11859-11869.
    30. Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; De Vos, D.; Stock, N., Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs. Chemistry of Materials 2013, 25, 17-26.
    31. Liu, X.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U., Three-step nucleation of metal–organic framework nanocrystals. Proceedings of the National Academy of Sciences 2021, 118, e2008880118.
    32. Tang, J.; Chu, Y.; Li, S.; Xu, J.; Xiong, W.; Wang, Q.; Deng, F., Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL‐53. Chemistry–A European Journal 2021, 27, 14711-14720.

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE