研究生: |
羅琳 Lo, Ling |
---|---|
論文名稱: |
印尼西爪哇碎屑鋯石及繼承鋯石之鈾-鉛定年學研究 U-Pb geochronology of detrital and inherited zircons from West Java, Indonesia |
指導教授: |
賴昱銘
Lai, Yu-Ming |
口試委員: |
李通藝
Lee, Tung-Yi 李皓揚 Lee, Hao-Yang 賴昱銘 Lai, Yu-Ming |
口試日期: | 2022/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 碎屑鋯石 、鈾鉛定年 、西爪哇 、巽他大陸 、新生代岩漿活動 |
英文關鍵詞: | Detrial zircon, U-Pb geochronology, West Java, Sundaland, Cenozoic island arc magmatism |
研究方法: | 田野調查法 、 鈾鉛定年法 |
DOI URL: | http://doi.org/10.6345/NTNU202201551 |
論文種類: | 學術論文 |
相關次數: | 點閱:160 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
爪哇島位於中生代巽他大陸核心的邊緣,是一平行隱沒帶之東西向島嶼。印澳板塊自中生代起開始向北漂移,並隱沒至歐亞板塊下方,產生多次的隱沒作用。期間也曾發生微陸塊貼合事件,造成爪哇島東西兩側之地體架構有所不同。依照其特徵可將爪哇島分為西爪哇、中爪哇和東爪哇。西爪哇北部的火成活動,為蘇門答臘向東延伸的白堊紀火山島弧。其他區域則以新生代火山島弧為主,火山活動年代包括第三紀及第四紀至今。前人針對西爪哇Jatibarang地層與南蘇門答臘出露之新近系火成岩進行研究,發現兩者具有相似的岩性與特徵,但並未提出年代的證據。本研究於西爪哇採集砂岩(包括河口砂質沉積物),進行碎屑鋯石鈾-鉛定年分析,並搭配火成岩中分析所得的繼承鋯石,依據鋯石年代在時間與空間上的分布情形,試比對西爪哇在不同時期之鋯石來源區域,以及西爪哇各期火山活動之年代。
本研究共分析5個砂岩,分別採自Ciletuh、Jasinga和Bayah地區;以及1個位於Ci Pamuhulan河口的砂質沉積物,總計分析627顆碎屑鋯石;並於Danau火山、Bayah(north)火山及Ciletuh地區採集的3個火成岩中,挑選繼承鋯石共62顆。年代分析結果指出:(1)西爪哇西北部具有約140 Ma之鋯石紀錄,可對比至蘇門答臘同時期的岩漿活動年代做對比,且此年代並未見於西爪哇南部樣本,(2) 西爪哇新生代以來之岩漿活動,具有遠離隱沒帶越趨年輕的現象,由南向北分別記錄了23 Ma、17 Ma及11 Ma三期事件,(3) 本研究於Bayah地區的砂岩及河口砂質沉積物中獲得始新世、白堊紀和三疊紀之碎屑鋯石年代訊號,結果顯示物源分別來自現地火山活動、婆羅洲的施瓦納山脈及馬來半島花岡岩。
Sundaland is the Mesozoic continental core of Southeast Asia, and the Java island locates at it’s southern margin which is an east-west island and parallel to a subduction zone. Since the Mesozoic Era, the Indo-Australian Plate began to drift northward, and subducted beneath the Eurasian Plate. During this period, several subduction events occurred and microcontinental blocks accreted to the margin of Sundaland. According to the characteristics of basement rocks, Java can be divided into three parts: West Java, Central Java and East Java. The igneous activity in the northern West Java is related to the Cretaceous volcanic arc, which extended eastward from Sumatra Island. The other areas are mainly Cenozoic volcanic arcs from Tertiary to Recent. Different to the East Java, there were few age constrains and no detrital zircon studies from previous works in the West Java.
In this study, we sampled sandstones, river sand, and andesites from West Java. According to the detrital zircon ages from sediment and sedimentary rocks and inherited zircons from igneous rocks, the volcanism with temporal and spatial distribution and the sources of detrital zircons can be identified in West Java. A total of 627 zircons from five sandstones from the Ciletuh, Jasinga, and Bayah areas, and one river sand from the Ci Pamuhulan were analyzed, moreover, 62 inherited zircons from three igneous rocks (Danau, Bayah (North) volcano and Ciletuh areas) were processed. The age results show: (1) The Cretaceous zircon ages (140 Ma) from the northwest West Java might be correlated with the magmatic activity in Sumatra, but they are not found in south West Java. (2) The Cenozoic magmatic activities in West Java are divided into three stages, i.e., 23 Ma, 17 Ma and 11 Ma from south to north. (3) The Triassic, Cretaceous, and Eocene detrital zircon signatures were identifeid from the sandstones and river sand in the Ciletuh and Bayah areas, and it is reasonable to suggest that their sources were from Malaya granites, Schwaner Mountains, and the volcanism in West Java.
In this study, we sampled sandstones, river sand, and andesites from West Java. According to the detrital zircon ages from sediment and sedimentary rocks and inherited zircons from igneous rocks, the volcanism with temporal and spatial distribution and the sources of detrital zircons can be identified in West Java. A total of 627 zircons from five sandstones from the Ciletuh, Jasinga, and Bayah areas, and one river sand from the Ci Pamuhulan were analyzed, moreover, 62 inherited zircons from three igneous rocks (Danau, Bayah (North) volcano and Ciletuh areas) were processed. The age results show: (1) The Cretaceous zircon ages (140 Ma) from the northwest West Java might be correlated with the magmatic activity in Sumatra, but they are not found in south West Java. (2) The Cenozoic magmatic activities in West Java are divided into three stages, i.e., 23 Ma, 17 Ma and 11 Ma from south to north. (3) The Triassic, Cretaceous, and Eocene detrital zircon signatures were identifeid from the sandstones and river sand in the Ciletuh and Bayah areas, and it is reasonable to suggest that their sources were from Malaya granites, Schwaner Mountains, and the volcanism in West Java.
許鈞傑 (2016) 西北蘇門答臘碎屑鋯石鈾鉛定年與鉿同位素研究。國立臺灣大學地質科學研究所碩士論文,共158頁。
Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192, 59-79.
Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216, 249-270.
Arboit, F., Collins, A. S., Morley, C. K., King, R. and Amrouch, K., 2016. Detrital zircon analysis of the southwest Indochina terrane, central Thailand: Unravelling the Indosinian orogeny. Geological Society of America Bulletin, 1024-1043.
Arpandi, D. and Patmosukismo, S., 1975. The Cibulakan Formation as one of the most prospective stratigraphic unit in the North-West Java basinal area. In Proceedings of the Indonesian Petroleum Association 4th Annual Convention, 181-210.
Barbeau, D. L., Davis, J. T., Murray, K. E., Valencia, V., Gehrels, G. E., Zahid, K. M. and Gombosi, D. J., 2009. Detrital-zircon geochronology of the metasedimentary rocks of north-western Graham Land. Antarctic Science, 22, 65.
Barber, A., Crow, M. J. and De Smet, M. E. M., 2005. Tectonic evolution. In: Barber, A.J., Crow, M.J., and Milsom, J.S., eds., Sumatra, Geology. Resources and Tectonic Evolution: Geological Society Memoir, 31, 234-259.
Carlile, J. C. and Mitchell, A. H. G., 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia. Journal of Geochemical Exploration, 50, 91-142.
Cawood, P. A., Nemchin, A. A., Freeman, M. and Sircombe, K., 2003. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters, 210, 259-268.
Chesner, C. A., 2012. The Toba caldera complex. Quaternary International, 258, 5-18.
Chiu, H. -Y., Chung, S. -L., Wu, F. -Y., Liu, D., Liang, Y. -H., Lin, I. -J., Iizuka, Y., Xie, L. -W., Wang, Y. and Chu, M. -F., 2009. Zircon U-Pb and Hf isotopic constraints from eastern Transhimalayan batholiths on the precollisional magmatic and tectonic evolution in southern Tibet. Tectonophysics, 477, 3-19.
Clements, B., 2008. Paleogene and Early Miocene tectonic and stratigraphic evolution of West Java, Indonesia [Ph.D. thesis]: Royal Holloway University of London, 405.
Clements, B. and Hall, R., 2007. Cretaceous to Late Miocene stratigraphic andtectonic evolution of West Java, Indonesia. Indonesian Petroleum Association Annual Convention, 31st, Proceedings, 87-104.
Clements, B. and Hall, R., 2008. U-Pb dating of detrital zircons from West Java show complex Sundaland provenance. Indonesian Petroleum Association. 32, IPA-08-G-115.
Clements, B., Hall, R., Smyth, H. R. and Cottam, M. A., 2009. Thrusting of a volcanic arc: a new structural model for Java. Petroleum Geoscience, 15(2), 159-174.
Clements, B., Sevastjanova, I., Hall, R., Belousova, E. A., Griffin, W. L. and Pearson, N., 2012. Detrital zircon U-Pb age and Hf-isotope perspective on sediment provenance and tectonic models in SE Asia. In: Rasbury, E.T., Hemming, S.R., Riggs, N.R. (Eds.), Mineralogical and Geochemical Approaches to Provenance, Geological Society of America Special Paper, 487, 37-61.
Curray, J. R., Emmel, F. J., Moore, D. G. and Raitt, R. W., 1982. Structure, Tectonics, and Geological History of the Northeastern Indian Ocean. The Ocean Basins and Margins, 399-450.
Davies, L. B., 2013. SW Borneo Basement: Age, Origin and Character of Igneous and Metamorphic Rocks from the Schwaner Mountains. Ph.D. Thesis. Royal Holloway University of London, 391.
DeCelles, P. G., Gehrels, G. E, Quade, J., LaReau, B. and Spurlin, M., 2000. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal, Science, 288, 497-499.
DeGraaff-Surpless, K., Mahoney, J. B., Wooden, J. L. and McWilliams, M. O., 2003 Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera. GSA Bulletin, 115, 899-915.
Dodson, M. H., Compston, W., Williams, I. S. and Wilson, J. F., 1988. A Search for Ancient Detrital Zircons in Zimbabwean Sediments. Journal of the Geological Society, 145(6), 977-983.
Doveton, J. H., 1976. Multidimensional Scaling of Sedimentary Rock Descriptors. Quantitative Techniques for the Analysis of Sediments, An International Symposium, 143-155.
Endang Thayyib, S., 1977. The status of the melange complex in Ciletuh area, Southwest Java. Indonesian Petroleum Association, Proceedings 6th Annual Convention, 241-254.
Effendi, A. C., Kusnama, and Hermanto, B., 2011. Peta Geologi Lembar Bogor, Jawa. Pusat Penelitian Dan Pengembangan Geologi, Bandung.
Fedo, C. M., Sircombe, K. N. and Rainbird, R., 2003. Detrital zircon analysis of the sedimentary record. In: Hanchar, J.M., Hoskin, P.W.O. (eds.). Zircon. Mineralogical Society of America Geochemical Society, 53, 277-303.
Gehrels, G. E. and Dickinson, W. R., 1995. Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. American Journal of Science, 295, 18-48.
Gehrels, G. E., 2011. Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities, in Tectonics of Sedimentary Basins: Recent AdvancesJohnWiley & Sons, Ltd, 45-62.
Gehrels, G. E., 2014. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annual Review of Earth and Planetary Sciences, 42(1), 127-149.
Gill, J. B., 1981. Orogenic Andesites and Plate Tectonics. Springer, Berlin, 390.
Grauert, B., Hanny, R. and Soptrajanova, G., 1973. Age and origin of detrital zircons from the pre-Permian basements of the Bohemian Massif and the Alps. Contributions to Mineralogy and Petrology, 40, 105-130.
Haile, N. S., McElhinny, M. W. and McDougall, I., 1977. Palaeomagnetic data and radiometric ages from the Cretaceous of West Kalimantan(Borneo), and their significance in interpreting regional structure. Journal of the Geological Society, 133, 133-144.
Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and anima- tions. Journal of Asian Earth Sciences, 20, 353-434.
Hall, R., 2008, Continental growth at the Indonesian margins of southeast Asia, in Spencer, J.E., and Titley, S.R., eds., Ores and Orogenesis: Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits: Arizona Geological Society Digest, 22, 245-258.
Hall, R., 2009. Indonesia, geology In: (R. Gillespie and D. Clague, eds.). Encyclopedia of Islands. University of California Press, Berkeley, CA., 454-460.
Hall, R., 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570-571, 1-41.
Hall, R., 2013. Contraction and extension in northern Borneo driven by subduction rollback. Journal of Asian Earth Sciences, 76, 399-411.
Hall, R., 2014. The origin of Sundaland. Proceedings of Sundaland Resources 2014 MGEI. Annual Convention 17-18. Palembang, South Sumatra, Indonesia.
Hall, R. and Morley, C.K, 2004. Sundaland Basins. Geophysical Monograph Series, 149, 55-85.
Hall, R. and Smyth, H., 2008. Cenozoic arc processes in Indonesia: identification of the key influences on the stratigraphic record in active volcanic arcs. Geological Society of London, Special Publication, 436, 27-54.
Hall, R., van Hattum, M. W. A. and Spakman, W., 2008. Impact of India-Asia collision on SE Asia: The record in Borneo. Tectonophysics, 451, 366-389.
Hall, R., Clements, B. and Smyth, H. R., 2009. Sundaland: Basement character, structure and plate tectonic development. Indonesian Petroleum Association Convention, 31st, Proceedings, 131-176.
Hall, R. and Spakman, W., 2015. Mantle structure and tectonic history of SE Asia. Tectonophysics, 658, 14-45.
Hamilton, W. B., 1979. Tectonics of the Indonesian region. U.S. Geological Survey Professional Paper reprinted with corrections, 1981 and 1985, 1078, 345.
Hamilton, W. B., 1988. Plate tectonics and island arcs. Geological Society of America Bulletin, 100, 1503-1527.
Harijoko, A., Sanematsu, K., Duncan, R. A., Prihatmoko, S. and Watanabe, K., 2004. Timing of the mineralization and vol- canism at Cibaliung gold deposit, western Java, Indonesia. Resource Geology, 54, 187-196.
Hoffman, P. F., Hawkins, D. P., Isachsen, C. E. and Bowring, S.A., 1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt. Communs geol. Surv. Namibia, 11, 47-52.
Honarkhah, M. and Caers, J., 2010. Stochastic simulation of patterns using distance-based pattern modeling. Mathematical Geosciences, 42, 487-517.
Hounslow, M. W., and Morton, A. C., 2004. Evaluation of sediment provenance using magnetic mineral inclusions in clastic silicates. Comparison with heavy mineral analysis, Sedimentary Geology. 171, 13-36.
Hutchison, C. S., 1973. Tectonic evolution of Sundaland: a Phanerozoic synthesis. Geological Society of Malaysia Bulletin, 6, 61-86.
Hutchison, C. S., 1982. Indonesia. In R. S. Thorpe (ed.), Andesites: Orogenic Andesites and Related Rocks (207-224). J.Wiley & Sons Ltd.
Hutchison, C. S., 1989. Indonesia. In Thorpe R. S. (ed.). Andesites, 207-224. John Wiley & Sons, Chichester.
Hutchison, C. S. and Tan, D. N. K., 2009. Geology of Peninsular Malaysia. The University of Malaya, The Geological Society of Malaysia, Kuala Lumpur, 479.
Hayward, B. W., and Smale, D., 1992. Heavy minerals and the provenance history of Waitemata Basin sediments (early Miocene, Northland, New Zealand). New Zealand Journal of Geology and Geophysics, 35, 223-242.
Jackson, S. E., Pearson, N. J., Griffina, W. L. and Belousova, E. A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211, 47-69.
Katili, J. A., 1973. Geochronology of west Indonesia and its implication on plate tectonics. Tectonophysics, 19, 195-212.
Keetley, J. T., Cooper, G. T., Hill, K. C., Kusumabrata, Y., O’Sullivan, P. B. and Saefudin, I., 1997. The structural development of the Honje High, Bayah High and adjacent offshore areas, West Java, Indonesia. Howes, J.V.C. and Noble, R.A. (eds) Proceedings of the International Conference on Petroleum Systems of SE Asia and Australia, 21-23 May, Jakarta, Indonesia. Indonesian Petroleum Association, 655-665.
Koolhoven, W. C. B., 1933. Geological Map of Java, Explanatory Notes to Sheet 14 (Bayah), 1:100,000. Mining Bureau of the Netherlands Indies.
Koschek, G., 1993. Origin and significance of the SEM cathodoluminescencefrom zircon. Journal of Microscopy, 171, 223-232.
Lemigas, 2001. Potensi hidrokarbon kawasan Jawa Tengah selatan dan Jawa Barat selatan. Report for Pertamina, unpublished (in Indonesian).
Li, S., Chung, S. -L., Lai, Y. -M., Ghani, A., Lee, H. -Y. and Murtadha, S., 2020. Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia. Geology, 48, 1002-1005.
Li, S., Sun, S., Yang, X., Sun, W. and Wu, Z., 2022. Detrital zircon U-Pb age perspective on the sediment provenance and its geological significance of sandstones in the Lamandau region, SW Borneo, Indonesia. Journal of Oceanology and Limnology, 40, 496-514.
Ludwig, K., 2012. User's Manual for Isoplot 3.75: A geochronologi- cal toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
Marks, P., 1957. Stratigraphic lexicon of Indonesia. Publikasi Keilmuan Djawatan Geologi Bandung, Seri Geologi, 31.
Marcoux, E. and Milesi, J. P., 1994. Epithermal gold deposits in West Java, Indonesia: geology, age and crustal source. Journal of Geochemical Exploration, 50, 393-408.
Martodjojo, S., Suparka, S. and Hadiwasastra, S., 1978. Status Formasi Ciletuh dalam evolusi Jawa Barat. Geologi Indonesia, 5, 29-38.
Martodjojo, S., 1984. Evolution of Bogor Basin, West Java. Doctorate Thesis, Institut Teknologi Bandung.
McInnes, B. I. A., Evans, N. J., Sukarna, D., Permanadewi, S., Garwin, S., Belousova, E., Griffin, W. L. and Fu, F., 2004. Thermal histories of Indonesian porphyry copper-gold deposits determined by U-Th-He, U-Pb, Re-Os, K-Ar and Ar-Ar methods. SEG 2004 Extended Abstracts, 343-346.
Metcalfe, I., 1988. Origin and assembly of Southeast Asian continental terranes. In: Audley-Charles, M.G. and Hallam, A. (Eds), Gondwana and Tethys. Geological Society of London Special Publication, 37, 101-118.
Metcalfe, I., 1990. Allochthonous terrane processes in Southeast Asia. Philosophical Transactions of the Royal Society of London, A331, 625-640.
Metcalfe, I., 1996. Pre-Cretaceous evolution of SE Asian terranes, in Hall, R., and Blundell, D.J., eds., Tectonic Evolution of SE Asia: Geological Society [London] Special Publication, 106, 97-122.
Metcalfe, I., 2009. Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia: Geological Society [London] Special Publication, 315, 7-23.
Metcalfe, I., 2011a. Palaeozoic-Mesozoic history of SE Asia. Geological Society London Special Publications, 355, 7-35
Metcalfe, I., 2011b. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Research, 19, 3-21.
Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1-33.
Metcalfe, I., 2017. Tectonic evolution of Sundaland. Bulletin of the Geological Society of Malaysia, 63, 27-60.
Miyazaki, K., Sopaheluwakan, J., Zulkarnain, I. and Wakita, K., 1998. A jadeite-quartz-glaucophane rock from Karangsambung, central Java, Indonesia. The Island Arc, 7, 223-230.
Myrow, P. M., Hughes, N. C., Paulsen, T. S., Williams, I. S., Parcha, S. K., Thompson, K. R., Bowing, S. A., Peng, S. C. and Ahluwalia, A. D., 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction, Earth and Planetary Science Letters, 212, 433-441.
Ng, S. W. -P., Whitehouse, M. J., Roselee, M. H., Teschner, T., Murtadha, S., Oliver, G. J. H., Ghani, A. A. and Chung, S. -L., 2017. Late Triassic granites from Bangka, Indonesia: A continuation of the Main Range granite province of the South-East Asian Tin Belt. Journal of Asian Earth Sciences, 138, 548-561.
Quek, L. -X., Lai, Y. -M., Ghani, A .A., Roselee, M .H., Lee, H. -Y., Iizuka, Y., M. F., Umor, Pecha, M., Lin, Y. -L., Rahmat, R. and Jamil, A., 2021. Peninsular Malaysia transitional geodynamic process from Gondwana to Pangaea: New constraints from 500 to 200 Ma magmatic zircon U-Pb ages and Hf isotopic compositions. Gondwana Research, 94, 56-72.
Quek, L. -X., Lee, T, -Y., Ghani, A. A., Yu-Ming Lai, Roselee, M .H., Lee, H. -Y., Iizuka, Y., Lai, Y. -M., Yeh, M. -W., Amran, M. A. and Rahmat, R., 2021. Tracing detrital signature from Indochina in Peninsular Malaysia fluvial sediment: Possible detrital zircon recycling into West Borneo Cenozoic sediments. Journal of Asian Earth Sciences, 218, 104876.
Pell, S. D., Williams, I. S. and Chivas, A. R., 1997. The use of protolith zircon-age fingerprints in determining the protosource areas for some Australian dune sands, Sedimentary Geology, 109, 233-260.
Pereira, M. F. and Gama, C., 2021. Revisiting the intermediate sediment repository concept applied to the provenance of zircon. Minerals, 11(3), 233.
Parkinson, C. D. Miyazaki, K. Wakita, K. Barber, A. J. and Carswell, D. A., 1998. An overview and tectonic synthesis of the pre-Tertiary very-high-pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. Island Arc, 7, 184-200.
Puspito, N. T. and Shimazaki, K., 1995. Mantle structure and seismotectonics of the Sunda and Banda arcs. Tectonophysics, 251, 215-228.
Ratman, N. and Gafoer, S., 1998. Peta Geologi Lembar Jawa Bagian Barat Geological Map Of Western Part Of Jawa(Scale1:500000).
Ricou, L. -E., 1995. The Plate Tectonic History of the past Tethys Ocean. The Tethys Ocean, 8, 3-70.
Rollinson, H., 1993, Using Geochemical Data: Evolution, Presentation, Interpretation. Longman Scientific and Technical, England, 352.
Rubatto, D., 2002. Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123-138.
Rusmana, E., Suwitodirjo, K. and Suharsono, 1991. Geological Map Of Serang Quadrangle Jawa(Scale 1:100000).
Saylor, J. E., Jordan, J. C., Sundell, K. E., Wang, X., Wang, S., and Deng, T., 2017. Topographic growth of the Jishi Shan and its impact on basin and hydrology evolution, NE Tibetan Plateau. Basin Research, 30, 544-563.
Schiller, D. M., Garrard, R. A. and Prasetyo, L., 1991. Eocene submarine fan sedimentation in southwest Java. Indonesian Petroleum Association, Proceedings 20th Annual Convention, 125-182.
Schwartz, M. O., Rajah, S. S., Askury, A. K., Putthapiban, P. and Djaswadi, S., 1995. The Southeast Asian Tin Belt. Earth-Science Reviews, 38, 95-293.
Searle, M. P., Whitehouse, M. J., Robb, L. J., Ghani, A. A., Hutchison, C. S., Sone, M., Ng, S. W. -P., Roselee, M. H., Chung, S. -L. and Oliver, G. J. H., 2014. Tectonic evolution of the Sibumasu−Indochina terrane collision zone in Thailand and Malaysia: constraints from new U-Pb zircon chronology of SE Asian tin granitoids. Journal of the Geological Society, 169, 489-500.
Sengor, A. M. C. and Natalin, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24, 263-337.
Setijadji, L. D., Kajino, S., Imai, A. and Watanabe, K., 2006. Cenozoic Island Arc Magmatism in Java Island (Sunda Arc, Indonesia): Clues on Relationships between Geodynamics of Volcanic Centers and Ore Mineralization. Geodynamics of Volcanic Centers and Mineralization in Java, 56, 267-292.
Setijadji, L. D., 2010. Segmented Volcanic Arc and its Association with Geothermal Fields in Java Island, Indonesia. Proceedings of the World Geothermal Congress, 25-29.
Sevastjanova, I., Clements, B., Hall, R., Belousova, E. A., Griffin, W. L. and Pearson, N., 2011. Granitic magmatism, basement ages, and provenance indicators in the Malay Peninsula: Insights from detrital zircon U–Pb and Hf-isotope data. Gondwana Research, 19, 1024-1039.
Simandjuntak, T. O. and Barber, A. J., 1996. Contrasting tectonic styles in the Neogene orogenic belts of Indonesia. In: Hall, R. & Blundell, D.J. (eds) Tectonic Evolution of SE Asia. Geological Society, London, Special Publica- tions, 106, 185-201.
Simons, W. J. F., Socquet A., Vigny, C., Ambrosius, B. A. C., Haji Abu, S., Promthong, C., Subarya, C., Sarsito, D. A., Matheussen, S., Morgan, P. and Spakman, W., 2007. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research, 112.
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. and Whitehouse, M. J., 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1-35.
Smyth, H. R., Hamilton, P. J., Hall, R. and Kinny, P. D., 2007. The deep crust beneath island arcs: Inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth and Planetary Science Letters, 258(1-2), 269-282.
Smyth, H. R., Hall, R. and Nichols, G. J., 2008. Early Cenozoic volcanic arc history of East Java, Indonesia: The stratigraphic record of eruptions on a continental margin in a tropical setting, in Draut, A.E., Clift, P.D., and Scholl, D.W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Paper, 436, 199-222.
Soeria-Atmadja, R. Maury, R. C., Bellon, H., Pringgoprawiro, H., Polves, M. and Priadi, B., 1994. Tertiary magmatic belts in Java. Journal of Southeast Asian Earth Science, 9, 13-27.
Soeria-Atmadja, R. and Noeradi, D., 2005. Distribution of early Tertiary volcanic rocks in South Sumatra and West Java. Island Arc, 14, 679-686.
Spakman, W. and Hall, R., 2010. Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3, 562-566.
Spencer, C. J. and Kirkland, C. L., 2015. Visualizing the sedimentary response through theorogenic cycle. A multidimensional scaling approach. Lithosphere, 8, 29-37.
Stampfli, G. M. and Borel., G. D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17-33.
Sujatmiko and Santoso, S., 1992. Geological Map of the Leuwidamar Quadrangle, Java. Geological Research and Development Centre, Bandung.
Sukamto, R., 1975. Geologic Map of the Jampang and Balekambang Quadrangles, Java (Scale 1:100,000). Geological Research and Development Centre, Bandung.
Sukarna, D., Mangga, S. A. and Brata, K., 1993. Geology of the Bayah Area: Implication for the Cenozoic Evolution of West Java, Indonesa. Geology Society of Malaysia 33, 163-180.
Sukarna, D., Mangga, S. A. and Brata, K., 1993. Geology of the Bayah area: implications for the Cenozoic evolution of West Java, Indonesia. Bulletin of the Geological Society of Malaysia, 33, 163-180.
Sukarno, Wantoro, Pane, Y. A. Noon, S. and Hulsbos, R., 1999. Well Cipatulah1, Malingping Block, Offshore Southwest Java. Unpublished, confidential well report.
Sunardi, E. and Kimura, J., 1998. Temporal chemical variations in late Cenozoic volcanic rocks around the Bandung Basin, West Java, Indonesia. Journal of Mineralogy, Petrology, and Economic Geology, 93, 103-128.
Suparka, 1995. Tectonic development of Sibolga fore arc, North Sumatra. Doctorate Thesis, Institut Teknologi Bandung.
Syracuse, E. M. and Geoffrey, A. A., 2006. Global compliation of variations in slab depth beneath arc volcanoes and implications. Geochemistry, Geophysics, Geosystems, 7(5), 1-18.
Tatsumi, Y. and Eggins, S., 1995. Subduction Zone Magmatism. Blackwell Science, Ann Arbor, 211.
van Bemmelen, R. W., 1949. The Geology of Indonesia. Government Printing Office, Nijhoff, The Hague, 730.
van Hattum, M. W. A., 2005. Provenance of Cenozoic sedimentary rocks of northern Borneo [Ph.D. thesis]. Royal Holloway University of London, 467.
van Hattum, M. W. A., Hall, R., Pickard, A. L. and Nichols, G.J., 2006. Southeast Asian sediments not from Asia: Provenance and geochronology of north Borneo sandstones. Geology, 34, 589-592.
van Hattum, M. W. A., Hall, R., Pickard, A. L. and Nichols, G. J., 2013. Provenance and geochronology of Cenozoic sandstones of northern Borneo. Journal of Asian Earth Sciences, 76, 266-282.
Vermeesch, P., 2004. How many grains are needed for a provenance study. Earth and Planetary Science Letters, 224, 3-4, 441-451.
Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical Geology, 341, 140-146.
Vermeesch, P., 2018. IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, 9, 1479-1493.
Vermeesch, P. and Garzanti, E., 2015. Making geological sense of “Big Data” in sedimentary provenance analysis. Chemical Geology, 409, 20-27.
Wetherill, G. W., 1956. Discordant Uranium-lead Ages. American Geophysical Union 37, 320-326.
Whitford, D. J., 1975. Strontium isotopic studies of the volcanic rocks of the Sunda arc, Indonesia, and their petrogenetic implications. Geochimica et Cosmochimica Acta, 39, 1287-1302.
Widiyantoro, S. and Van der Hilst, R., 1996. Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science, 271, 1566-1570.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. and Spiegel, W., 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geo-standards Newsletter, 19, 1-23.
Wikarno, R., Hardjono, T. and Graha, D. S., 1993. Distribution of Radiometric Ages in Indonesia, Scale 1:5,000,000. Geological Research and Development Centre, Bandung.
Williams, P. R., Johnston, C. R., Almond, R.A. and Simamora, W. H., 1988, Late Cretaceous to Early Tertiary structural elements of West Kalimantan: Tectonophysics, 148, 279-297.
Wissink, G. K., Wilkinson, B. H. and Hoke, G. D., 2018. Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere, 10, 478-491.
Wu, C., Zhanga, Z., Rosana, M. F., Shu, Q., Zheng, C., Xu, J., Li, X. and Jin, Z., 2019. The continental crust contributes to magmatic hydrothermal gold deposit in Ciemas, West Java, Indonesia: Constraints from Hf isotopes of zircons and in situ Pb isotopes of sulfides. Ore Geology Reviews, 112, 103010.
Xu, C., Shi, H., Barnes, C.G. and Zhou, Z., 2016. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. Int. Geol. 58, 71-94.
Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S. and Galloway, W. E., 2017. Early Miocene continental-scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129, 3-22.
Yulianto, I., Hall, R., Clements, B. and Elders, C., 2007. Structural and stratigraphic evolution of the offshore Malingping Block, West Java, Indonesia. Indonesian Petroleum Association, Proceedings 31st Annual Convention, 171-183.